A Gravity-Based Approach to Connect Food Retailers with Consumers for Traceback Models of Food-Borne Diseases
- 1 Citations
- 1.9k Downloads
Abstract
Computational traceback models are important tools for investigations of widespread food-borne disease outbreaks as they help to determine the causative outbreak location and food item. In an attempt to understand the entire food supply chain from farm to fork, however, these models have paid little attention to consumer behavior and mobility, instead making the simplifying assumption that consumers shop in their home location. This paper aims to fill this gap by modelling food-flows from supermarkets to consumers in a large-scale gravity model for Hesse, Germany. Modelling results show that on average, groceries are sourced from two to four postal zones with half of all goods originating from non-home postal zones. The results contribute to a better understanding of the last link in the food supply chain. In practice, this allows investigators to relate reported outbreak cases with sourcing zones and respective food-retailers. The inclusion of this information into existing models is expected to improve their performance.
Keywords
Food supply network Supply-chain network Gravity model Grocery shopping Food-borne diseasesNotes
Acknowledgement
The project this report is based on was supported with funds from the German Federal Ministry for Education and Research (BMBF) in the context of the call “Civil Security - Critical structures and processes in production and logistics” under project number 13N15072.
References
- 1.World Health Organization: Foodborne Disease Outbreaks: Guidelines for Investigation and Control. WHO Library Cataloguing-in-Publication Data. World Health Organization, Geneva (2008)Google Scholar
- 2.Tinga, C., Todd, E., Cassidy, M., Pollari, F., Marshall, B., Greig, J., et al.: Exploring historical Canadian foodborne outbreak data sets for human illness attribution. J. Food Prot. 72(9), 1963–1976 (2016)Google Scholar
- 3.Marvin, H.J.P., Janssen, E.M., Bouzembrak, Y., Hendriksen, P.J.M., Staats, M.: Big data in food safety: an overview. Crit. Rev. Food Sci. Nutr. 57(11), 2286–2295 (2017)CrossRefGoogle Scholar
- 4.Horn, A.L., Friedrich, H.: Locating the source of large-scale diffusion of foodborne contamination. J. R. Soc. Interface 16(151), 1–11 (2019)CrossRefGoogle Scholar
- 5.Manitz, J., Kneib, T., Schlather, M., Helbing, D., Brockmann, D.: Origin detection during food-borne disease outbreaks - a case study of the 2011 EHEC/HUS outbreak in Germany. PLoS Curr. (2014)Google Scholar
- 6.Norström, M., Kristoffersen, A.B., Görlach, F.S., Nygård, K., Hopp, P.: An adjusted likelihood ratio approach analysing distribution of food products to assist the investigation of foodborne outbreaks. PLoS ONE 10(8), 1–13 (2015)CrossRefGoogle Scholar
- 7.Kaufman, J., Lessler, J., Harry, A., Edlund, S., Hu, K., Douglas, J., et al.: A likelihood-based approach to identifying contaminated food products using sales data: performance and challenges. PLoS Comput. Biol. 10(7), 1–10 (2014)CrossRefGoogle Scholar
- 8.Infas: Mobilität in Deutschland - Ergebnisbericht (2017)Google Scholar
- 9.Veenstra, S.A., Thomas, T., Tutert, S.I.A.: Trip distribution for limited destinations: a case study for grocery shopping trips in the Netherlands. Transportation (Amst) 37(4), 663–676 (2010)CrossRefGoogle Scholar
- 10.Jonker, N.J., Venter, C.J.: Modeling trip-length distribution of shopping center trips from GPS data. J. Transp. Eng. Part A Syst. 145(1), 04018079 (2019)CrossRefGoogle Scholar
- 11.McFadden, D.: Disaggregate behavioral travel demand’s RUM side a 30-year retrospective (2000)Google Scholar
- 12.Suhara, Y., Bahrami, M., Bozkaya, B., Pentland, A.(S.), Suhara, Y., et al.: Validating gravity-based market share models using large-scale transactional data (2019)Google Scholar
- 13.Cascetta, E., Pagliara, F., Papola, A.: Alternative approaches to trip distribution modelling: a retrospective review and suggestions for combining different approaches. Pap. Reg. Sci. 86(4), 597–620 (2007)CrossRefGoogle Scholar
- 14.Drezner, T.: Derived attractiveness of shopping malls. IMA J. Manag. Math. 17, 349–358 (2006)MathSciNetCrossRefGoogle Scholar
- 15.Hyman, G.M.: The calibration of trip distribution models. Environ. Plan. 1, 105–112 (1969)CrossRefGoogle Scholar
- 16.Furness, K.P.: Time function iteration. Traffic Eng. Control 77, 458–460 (1965)Google Scholar
- 17.Suel, E., Polak, J.W.: Development of joint models for channel, store, and travel mode choice: grocery shopping in London. Transp. Res. Part A Policy Pract. 99, 147–162 (2017)CrossRefGoogle Scholar
- 18.Viegas, J.M., Martinez, L.M., Silva, E.A.: Effects of the modifiable areal unit problem on the delineation of traffic analysis zones. Environ. Plan. B Plan. Des. 36(4), 625–643 (2009)CrossRefGoogle Scholar
- 19.de Dios Ortúzar, D., Willumsen, L.G.: Modelling Transport. Wiley, Chichester (2011)CrossRefGoogle Scholar
- 20.Martin, W., McGuckin, N.: Report 365: Travel Estimation Techniques for Urban Planning. Washington, DC (1998)Google Scholar
- 21.Huff, D.: Calibrating the huff model using ArcGIS business analyst (2008)Google Scholar
- 22.Open Street Map: OpenStreetMap Deutschland: Die freie Wiki-Weltkarte (2019). https://www.openstreetmap.de/
- 23.Statistische Ämter des Bundes und der Länder: ZENSUS2011 - Homepage (2018). https://www.zensus2011.de/EN/Home/home_node.html;jsessionid=8A55DF20B6CB474A1DB6DEFDD94B4949.1_cid389
- 24.Khatib, Z., Ou, Y., Chang, K.: Session #10 GIS and Transportation Planning (1999)Google Scholar
- 25.Kordi, M., Kaiser, C., Fotheringham, A.S.: A possible solution for the centroid-to-centroid and intra-zonal trip length problems. In: Gense, J., Josselin, D., Vandenbroucke, D. (es.) Multidisciplinary Research on Geographical Information in Europe and Beyond, Avignon, pp. 147–152 (2012)Google Scholar
- 26.Bhatta, B.P., Larsen, O.I.: Are intrazonal trips ignorable? Transp. Policy 18, 13–22 (2010)CrossRefGoogle Scholar
- 27.Manout, O., Bonnel, P.: The impact of ignoring intrazonal trips in assignment models: a stochastic approach. Transportation (Amst), 1–21 (2018)Google Scholar
- 28.CZuber, E.: Geometrische Wahrscheinlichkeiten und Mittelwerte. T.B. Teubner, Leipzig (1884)Google Scholar
- 29.Larson, R., Odoni, A.: Urban Operations Research. Prentice Hall, New Jersey (1981)Google Scholar
- 30.Lebensmittel Zeitung: Ranking: Top 30 Lebensmittelhandel Deutschland 2018 (2018). https://www.lebensmittelzeitung.net/handel/Ranking-Top-30-Lebensmittelhandel-Deutschland-2018-134606
- 31.Edeka: Edeka Einzelhandel (2019)Google Scholar
- 32.Infas: Mobilität in Deutschland - Wissenschaftlicher Hintergrund (2019). http://www.mobilitaet-in-deutschland.de/
- 33.Mekky, A.: A direct method for speeding up the convergence of the furness biproportional method. Transp. Res. Part B 17B(1), 1–11 (1983)MathSciNetCrossRefGoogle Scholar
- 34.Cesario, F.J.: Parameter estimation in spatial interaction modeling. Environ. Plan. A Econ. Sp. 5(4), 503–518 (1973)CrossRefGoogle Scholar