Skip to main content

Comparing Spectra of Graph Shift Operator Matrices

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 882))

Included in the following conference series:

Abstract

Typically network structures are represented by one of three different graph shift operator matrices: the adjacency matrix and unnormalised and normalised Laplacian matrices. To enable a sensible comparison of their spectral (eigenvalue) properties, an affine transform is first applied to one of them, which preserves eigengaps. Bounds, which depend on the minimum and maximum degree of the network, are given on the resulting eigenvalue differences. The monotonicity of the bounds and the structure of networks are related. Bounds, which again depend on the minimum and maximum degree of the network, are also given for normalised eigengap differences, used in spectral clustering. Results are illustrated on the karate dataset and a stochastic block model. If the degree extreme difference is large, different choices of graph shift operator matrix may give rise to disparate inference drawn from network analysis; contrariwise, smaller degree extreme difference results in consistent inference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aleardi, L.C., Salihoglu, S., Singh, G., Ovsjanikov, M.: Spectral measures of distortion for change detection in dynamic graphs. In: Aiello, L.M., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L.M. (eds.) Complex Networks and Their Applications VII, pp. 54–66. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05414-4_5

    Google Scholar 

  2. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM (2000)

    Google Scholar 

  3. Batagelj, V., Mrvar, A.: Pajek datasets (2006). http://vlado.fmf.uni-lj.si/pub/networks/data/. Accessed 23 Nov 2016

  4. Cvetkovic, D., Gutman, I.: Applications of Graph Spectra: An Introduction to the Literature. Zbornik radova, vol. 14, pp. 9–34 (2011)

    Google Scholar 

  5. Chen, P.Y., Hero, A.O.: Deep community detection. IEEE Trans. Signal Process. 63, 5706–5719 (2015). https://doi.org/10.1109/TSP.2015.2458782

    Article  MathSciNet  MATH  Google Scholar 

  6. Chung, F.R.K.: Spectral graph theory. American Mathematical Society (1997)

    Google Scholar 

  7. Crawford, B., Gera, R., House, J., Knuth, T., Miller, R.: Graph structure similarity using spectral graph theory. In: Cherifi, H., Gaito, S., Quattrociocchi, W., Sala, A. (eds.) Complex Networks & Their Applications V, pp. 209–221. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50901-3_17

    Chapter  Google Scholar 

  8. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010). https://doi.org/10.1016/j.physrep.2009.11.002

    Article  MathSciNet  Google Scholar 

  9. Karrer, B., Newman, M.E.J.: Stochastic blockmodels and community structure in networks. Phys. Rev. E 83, 016107 (2011). https://doi.org/10.1103/PhysRevE.83.016107

    Article  MathSciNet  Google Scholar 

  10. Kumar, S., Ying, J., de M. Cardoso, J.V., Palomar, D.P.: A unified framework for structured graph learning via spectral constraints. arXiv:1904.09792 [stat.ML] (2019)

  11. Lei, J., Rinaldo, A.: Consistency of spectral clustering in stochastic block models. Ann. Stat. 43, 215–237 (2015). https://doi.org/10.1214/14-AOS1274

    Article  MathSciNet  MATH  Google Scholar 

  12. Ortega, A., Frossard, P., Kovacevic, J., Moura, J.M.F., Vandergheynst, P.: Graph signal processing: overview, challenges, and applications. Proc. IEEE 106, 808–828 (2018). https://doi.org/10.1109/JPROC.2018.2820126

    Article  Google Scholar 

  13. Rohe, K., Chatterjee, S., Yu, B.: Spectral clustering and the high-dimensional stochastic blockmodel. Ann. Stat. 39, 1878–1915 (2011). https://doi.org/10.1214/11-AOS887

    Article  MathSciNet  MATH  Google Scholar 

  14. Tremblay, N., Borgnat, P.: Graph wavelets for multiscale community mining. IEEE Signal Process. Mag. 62, 5227–5239 (2014). https://doi.org/10.1109/TSP.2014.2345355

    Article  MathSciNet  MATH  Google Scholar 

  15. van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  16. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007). https://doi.org/10.1109/TSP.2015.2458782

    Article  MathSciNet  Google Scholar 

  17. von Luxburg, U., Belkin, M., Bousquet, O.: Consistency of spectral clustering. Ann. Stat. 36, 555–586 (2008). https://doi.org/10.1214/009053607000000640

    Article  MathSciNet  MATH  Google Scholar 

  18. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977). https://doi.org/10.1086/jar.33.4.3629752

    Article  Google Scholar 

  19. Zumstein, P.: Comparison of Spectral Methods Through the Adjacency Matrix and the Laplacian of a Graph. Ph.D. thesis, ETH Zürich (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes F. Lutzeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lutzeyer, J.F., Walden, A.T. (2020). Comparing Spectra of Graph Shift Operator Matrices. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 882. Springer, Cham. https://doi.org/10.1007/978-3-030-36683-4_16

Download citation

Publish with us

Policies and ethics