Skip to main content

Characterization of Organic Waste: A Primordial Step for Efficient Valorization by Anaerobic Digestion

  • Conference paper
  • First Online:
Advanced Intelligent Systems for Sustainable Development (AI2SD’2019) (AI2SD 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1104))

Abstract

Anaerobic digestion is a process of controlled biological decomposition that takes place without oxygen and that generates both biogas convertible into energy and a valuable solid residue called digestate.

In order to overcome the problems associated with the management of organic waste (food waste, green waste and septics tank’s waste), on a small scale, the development of the anaerobic digestion process could see a potentially significant growth.

The nature of the organic waste can, considerably, differ according to several factors such as the producer, the season, the territory, etc…. It is therefore better to know the characteristics of waste for an efficient valorization by anaerobic digestion.

Results from various papers and studies conducted worldwide have been compiled and statistically analyzed to determine the variability of organic waste characteristics and the effect of these variable values on the anaerobic digestion process.

Then, a characterization of the organic waste, through the analysis of samples taken from the field of study, was accomplished so as to compare the experimental results with the literature and to complement the latter’s data with physical-biochemical characteristics and to relate them to the anaerobic biodegradation potential.

Finally, we used a statistical tool, the mixing plan, to define the mixtures to be tested. The problem that arose was to know, among the waste to be mixed, what proportion of each mono-substrate would give the best Biochemical Methane Potential (BMP) and whether it was possible to highlight synergistic effects between wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari, B.K., Barrington, S., Martinez, J., King, S.: Characterization of food waste and bulking agents for composting. Waste Manag. 28(5), 795–804 (2008)

    Article  Google Scholar 

  • Adhikari, B.K., Trémier, A., Barrington, S., Martinez, J.: Biodegradability of municipal organic waste: a respirometric test. Waste and Biomass Valoriz. 4(2), 331–340 (2013)

    Article  Google Scholar 

  • Andrews, J.F., Pearson, E.A.: Kinetics and characteristics of volatile acid productions in anaerobic fermentation processes. Int. J. Air Water Pollut. 9, 439 (1965)

    Google Scholar 

  • Andriani, D., Wresta, A., Saepudin, A., Prawara, B.: A review of recycling of human excreta to energy through biogas generation: Indonesia case. Energy Procedia (2015). core.ac.uk

  • Banks, C.J., Chesshire, M., Heaven, S., Arnold, R.: Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance. Biores. Technol. 102(2), 612–620 (2011)

    Article  Google Scholar 

  • Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H., Vavilin, V.A.: The IWA anaerobic digestion model no. 1 (ADM1). Water Sci. Technol. 45(10), 65–73 (2002)

    Article  Google Scholar 

  • Bernard, O., Hadj-Sadok, Z., Dochain, D., Genovesi, A., Steyer, J.-P.: Dynamical modes development and parameter identification for an anaerobic wastewater treatment process. Biotechnol. Bioeng. 75(4), 424–438 (2001)

    Article  Google Scholar 

  • Browne, J.D., Allen, E., Murphy, J.D.: Improving hydrolysis of food waste in a leach bed reactor. Waste Manage. 33(11), 2470–2477 (2013)

    Article  Google Scholar 

  • Brown, D., Li, Y.: Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Biores. Technol. 127, 275–280 (2013)

    Article  Google Scholar 

  • Carlsson, M., Lagerkvist, A., Morgan-Sagastume, F.: The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Manage. 32(9), 1634–1650 (2012). https://doi.org/10.1016/j.wasman.2012.04.016

    Article  Google Scholar 

  • Charles, W., Walker, L., Cord-Ruwisch, R.: Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste. Bioresour. Technol. 100(8), 2329–2335 (2009). https://doi.org/10.1016/j.biortech.2008.11.051

    Article  Google Scholar 

  • Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Biores. Technol. 99(10), 4044–4064 (2008)

    Article  Google Scholar 

  • De Vrieze, J., De Lathouwer, L., Verstraete, W., Boon, N.: High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste. Water Res. 47, 3732–3741 (2013)

    Article  Google Scholar 

  • El-Mashad, H.M., Zhang, R.: Biogas production from co-digestion of dairy manure and food waste. Biores. Technol. 101(11), 4021–4028 (2010)

    Article  Google Scholar 

  • Esposito, G., Frunzo, L., Giordano, A., Liotta, F., Panico, A., Pirozzi, F.: Anaerobic co-digestion of organic wastes. Rev. Environ. Sci. Biotechnol. 11(4), 325–341 (2012). https://doi.org/10.1007/s11157-012-9277-8

    Article  Google Scholar 

  • Eynard, J.: Modélisation, optimisation dynamique et commande d’un méthaniseur par digestion anaerobie. Rapport de projet de fin d’études, Université de Perpignan Via Domitia, Juillet 2007. 80p

    Google Scholar 

  • Fisgativa, H., Tremier, A., Le Roux, S., Bureau, C., Dabert, P.: Understanding the anaerobic biodegradability of food waste: relationship between the typological, biochemical and microbial characteristics. J. Environ. Manag. 188, 95–107 (2017)

    Article  Google Scholar 

  • Hill, D.T., Barth, C.L.: A dynamic model for simulation of animal waste digestion. J. WPCF 10, 2129–2143 (1977)

    Google Scholar 

  • Inanc, B., Matsui, S., Ide, S.: Propionic acid accumulation and controlling factors in anaerobic treatment of carbohydrate: effects of H2 and pH. Water Sci. Technol. (1996). Elsevier.

    Google Scholar 

  • Kayhanian, M.: Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ. Technol. (1999)

    Google Scholar 

  • Kiely, G., Tayfur, G., Dolan, C., Tanji, K.: Physical and mathematical modeling of anaerobic digestion of organic wastes. Water Resour. 31, 534–540 (1996)

    Google Scholar 

  • Lee, Z.-K., Li, S.-L., Lin, J.-S., Wang, Y.-H., Kuo, P.-C., Cheng, S.-S.: Effect of pH in fermentation of vegetable kitchen wastes on hydrogen production under a thermophilic condition. Int. J. Hydrogen Energy 33(19), 5234–5241 (2008)

    Article  Google Scholar 

  • Lim, J.W., Wang, J.-Y.: Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste. Waste Manage. 33(4), 813–819 (2013). https://doi.org/10.1016/j.wasman.2012.11.013

    Article  Google Scholar 

  • Lin, Y., Wu, S., Wang, D.: Hydrogen-methane production from pulp & paper sludge and food waste by mesophilic–thermophilic anaerobic co-digestion. Int. J. Hydrogen Energy 38(35), 15055–15062 (2013)

    Article  Google Scholar 

  • Liu, C., Yuan, X., Zeng, G., Li, W., Li, J.: Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresour. Technol. 99(4), 882–888 (2008). https://doi.org/10.1016/j.biortech.2007.01.013

    Article  Google Scholar 

  • López, M., Soliva, M., Martínez-Farré, F.X., Fernández, M., Huerta-Pujol, O.: Evaluation of MSW organic fraction for composting: Separate collection or mechanical sorting. Resour. Conserv. Recycl. 54, 222–228 (2010)

    Article  Google Scholar 

  • Ma, J., Duong, T.H., Smits, M., Verstraete, W., Carballa, M.: Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresour. Technol. 102(2), 592–599 (2011)

    Article  Google Scholar 

  • McCarthy, P.L.: Anaerobic waste treatment fundamentals. Part III: toxic materials and their control. Public Works (1964)

    Google Scholar 

  • Moletta, R.: Procédés biologiques anaérobies, Dans Gestion des problèmes environnementaux dans les industries agroalimentaires. Technique et documentation-Editions Lavoisier, Paris (2002)

    Google Scholar 

  • Moletta, R.: La méthanisation. Tec et Doc (2008)

    Google Scholar 

  • Moletta, R.: La méthanisation. Lavoisier (2011)

    Google Scholar 

  • Morau, D.: Modélisation des dispositifs de revalorisation énergétiques des déchets solides et liquides (Séchage, Méthanisation, Incinération). Mise en oeuvre d’un outil d’aide à la conception multi-systèmes multi-modèles. Thèse de doctorat, Université de La Réunion (2006). 285p

    Google Scholar 

  • Noykova, N., Müller, T.G., Gyllenberg, M., Timmer, J.: Quantitative analyzed of anaerobic wastewater treatment process: identifiability and parameter estimation. Biotechnol. Bioeng. 78, 89–103 (2002)

    Article  Google Scholar 

  • Peu, P., Picard, S., Diara, A., Girault, R., Beline, F., Bridoux, G., Dabert, P.: Prediction of hydrogen sulphide production during anaerobic digestion of organic substrates. Bioresour. Technol. 121, 419–424 (2012)

    Article  Google Scholar 

  • Shin, H.-S., Youn, J.-H., Kim, S.-H.: Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int. J. Hydrogen Energy 29(13), 1355–1363 (2004)

    Article  Google Scholar 

  • Simeonov, I.V., Momchev, V., Grancharov, D.: Dynamic modeling of mesophilic digestion of animal waste. Water Res. 30, 1087–1094 (1996)

    Article  Google Scholar 

  • Spuhler, D.: Etat des Lieux et Suivie de la Station d'Epuration du CREPA-Siege: Evaluation des Performances épuratoires en Comparaison avec les Stations de Lagunage du 2iE et de Kossodo. Ouagadougou: Réseau CREPA (Centre Régional Pour l'Eau Potable et l'Assainissement à faible couts) (2010)

    Google Scholar 

  • Sterritt, R.M., Lester, J.N.: Interactions of heavy metals with bacteria. Sci. Total Environ. (1980). Elsevier

    Google Scholar 

  • Swanwick, J.D., Shurben, D.G.: Effective chemical treatment for inhibition of anaerobic sewage sludge digestion due to anionic detergents (1969)

    Google Scholar 

  • Rakotoniaina, V.A.: Co-méthanisation des déchets fermiers et alimentaires: expérimentation et modélisation (2015)

    Google Scholar 

  • Tampio, E., Ervasti, S., Paavola, T., Heaven, S., Banks, C., Rintala, J.: Anaerobic digestion of autoclaved and untreated food waste. Waste Manage. 34(2), 370–377 (2014)

    Article  Google Scholar 

  • Voegeli, Y., Zurbrügg, C.: Decentralised anaerobic digestion of kitchen and market waste in developing countries-‘state of the art’ in south India. Proc. Venice (2008)

    Google Scholar 

  • Wang, X., Zhao, Y.-C.: A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process. Int. J. Hydrogen Energy 34(1), 245–254 (2009)

    Article  Google Scholar 

  • Xiao, L., Deng, Z., Fung, K.Y., Ng, K.M.: Biohydrogen generation from anaerobic digestion of food waste. Int. J. Hydrogen Energy 38(32), 13907–13913 (2013)

    Article  Google Scholar 

  • Zhang, C., Xiao, G., Peng, L., Su, H., Tan, T.: The anaerobic co-digestion of food waste and cattle manure. Biores. Technol. 129, 170–176 (2013)

    Article  Google Scholar 

  • Zhang, R., El-Mashad, H.M., Hartman, K., Wang, F., Liu, G., Choate, C., Gamble, P.: Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 98(4), 929–935 (2007)

    Article  Google Scholar 

  • Zhu, J., Wan, C., Li, Y.: Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresour. Technol. 101(19), 7523–7528 (2010). https://doi.org/10.1016/j.biortech.2010.04.060

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Sadki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sadki, N., Taleb, A. (2020). Characterization of Organic Waste: A Primordial Step for Efficient Valorization by Anaerobic Digestion. In: Ezziyyani, M. (eds) Advanced Intelligent Systems for Sustainable Development (AI2SD’2019). AI2SD 2019. Advances in Intelligent Systems and Computing, vol 1104. Springer, Cham. https://doi.org/10.1007/978-3-030-36671-1_11

Download citation

Publish with us

Policies and ethics