Deformation Driven Precipitation in Binary Magnesium Alloys

  • Suhas Eswarappa Prameela
  • Timothy P. WeihsEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Unlike Aluminum (Al) alloys, precipitation strengthening of Magnesium (Mg) alloys has proven challenging. Precipitate density is typically too low, and precipitate size is often too large and elongated to enhance the resistance to plastic deformation significantly. Mimicking recent work in Al alloys, we are exploring how low-temperature plastic deformation can enhance the density, size, and morphology of common intermetallic particles and thereby lead to significant hardening in Mg alloys. The low temperatures tend to favor nucleation overgrowth, while the deformation provides vacancies and dislocations that can assist nucleation. Using equal channel angular extrusion, and moderate temperatures, we explore the processing and thermodynamic factors controlling nucleation and growth of precipitates in Mg–Al and Mg–Zn binary alloys.


Dynamic precipitation Nucleation Magnesium alloys Nano precipitates Strengthening 


  1. 1.
    X.L. Ma, S. Eswarappa Prameela, P. Yi, M. Fernandez, N.M. Krywopusk, L.J. Kecskes, T. Sano, M.L. Falk, T.P. Weihs, Acta Mater. 172 (2019) 185–199.Google Scholar
  2. 2.
    S.R. Agnew, J.F. Nie, Scr. Mater. 63 (2010) 671–673.Google Scholar
  3. 3.
    J. Robson, Metall. Mater. Trans. A 45 (2014) 5226–5235.Google Scholar
  4. 4.
    J.D. Robson, N. Stanford, M.R. Barnett, Scr. Mater. 63 (2010) 823–826.Google Scholar
  5. 5.
    N. Stanford, J. Geng, Y.B. Chun, C.H.J. Davies, J.F. Nie, M.R. Barnett, Acta Mater. 60 (2012) 218–228.Google Scholar
  6. 6.
    J.F. Nie, B.C. Muddle, H.I. Aaronson, S.P. Ringer, J.P. Hirth, Metall. Mater. Trans. A 33 (2002) 1649–1658.Google Scholar
  7. 7.
    S. Eswarappa Prameela, P. Yi, V. Liu, B. Medeiros, L.J. Kecskes, M.L. Falk, and T.P. Weihs, Effect of Second Phase Particle Size on the Recrystallized Microstructure of Mg–Al Alloys Following ECAE Processing, Magnesium Technology 2020.
  8. 8.
    J.F. Nie, B.C. Muddle, Mater. Sci. Eng. A 319–321 (2001) 448–451.Google Scholar
  9. 9.
    W. Sun, Y. Zhu, R. Marceau, L. Wang, Q. Zhang, X. Gao, C. Hutchinson, Science 363 (2019) 972–975.Google Scholar
  10. 10.
    P. Yi, R.C. Cammarata, M.L. Falk, Model. Simul. Mater. Sci. Eng. 25 (2017) 085001.Google Scholar
  11. 11.
    J.F. Nie, B.C. Muddle, Acta Mater. 48 (2000) 1691–1703.Google Scholar
  12. 12.
    X. Gao, J.F. Nie, Scr. Mater. 58 (2008) 619–622.Google Scholar
  13. 13.
    J.-F. Nie, Metall. Mater. Trans. A 43 (2012) 3891–3939.Google Scholar
  14. 14.
    D. Mallick, S. Eswarappa-Prameela, V. Kannan, M. Zhao, J. Lloyd, T. Weihs, KT Ramesh, On the Role of Texture and Precipitate Orientation in Spall Failure of a Rolled Magnesium Alloy, in Bulletin of the American Physical Society, 2019, vol. Volume 64, Number 8. (
  15. 15.
    J.B. Clark, Acta Metall. 16 (1968) 141–152.Google Scholar
  16. 16.
    Prameela, S. Eswarappa and Yi, Peng and Mediros, Beatriz and Liu, Vance and Keckes, Laszlo J. and Falk, Michael L. and Weihs, Timothy P., Deformation Assisted Nucleation of Continuous Nanoprecipitates in Mg-Al Alloys (11 11, 2019). Available at SSRN:
  17. 17.
    Ma, X., Eswarappa-Prameela, S., Krywopusk, N., Kecskes, L. J., Sano, T., & Weihs, T. P. (2018). Dynamic Precipitation in a Binary Mg-Al Alloy During Equal Channel Angular Extrusion (ECAE). Microscopy and Microanalysis, 24(S1), 2222–2223Google Scholar
  18. 18.
    J.F. Nie, Acta Mater. 56 (2008) 3169–3176.Google Scholar
  19. 19.
    J.F. Nie, Scr. Mater. 48 (2003) 1009–1015.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringHopkins Extreme Materials Institute, Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations