Skip to main content

The Role of Faceting in \( {\mathbf{\{ 10\bar{1}2\} }} \) Twin Nucleation

  • Conference paper
  • First Online:
Magnesium Technology 2020

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 1812 Accesses

Abstract

{1012} twinning is the most profuse twin mode in Mg and plays a major role in its plasticity and deformation . Identification of the mechanisms and locations of twinning nucleation is crucial to characterize the ensuing microstructural evolution and failure. Herein, we provide a new theory of hexagonal close-packed twin nucleation. In essence, the theory is that twins need a pre-existing interface upon which to grow. In the earliest stages of nucleation, this requirement implies that the twin must be able to facet onto the same plane as the local interface, whether it be a free surface, stacking fault, or grain boundary, and that the action of twinning must reduce the defect energy of the pre-existing structure in order to remain stable until it can grow large enough to emit disconnections. The theory is demonstrated on {1012} twin nucleation at grain boundaries and stacking faults in Mg via molecular dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Orowan, AIME, New York p. 69 (1954)

    Google Scholar 

  2. P. Price, J. Appl. Phys. 32(9), 1746 (1961)

    Google Scholar 

  3. J.W. Christian, The Theory of Transformations in Metals and Alloys: Part I + II. (Elsevier, 2002)

    Google Scholar 

  4. D. Oliver, Research 5, 45 (1952)

    Google Scholar 

  5. N.P. Allen, B.E. Hopkins, J.E. McLennan, Proc. R. Soc. London, Ser. A 234(1197), 221 (1956)

    Google Scholar 

  6. J.J. Cox, G. Horne, R. Mehl, T. Am. Soc. Metal 49, 118 (1957)

    Google Scholar 

  7. C. Barrett, H. El Kadiri, M. Tschopp, J. Mech. Phys. Solids 60(12), 2084 (2012). Cited By (since 1996) 0

    Google Scholar 

  8. R.L. Bell, R.W. Cahn, Proc. R. Soc. London, Ser. A 239, 494 (1957)

    Google Scholar 

  9. R.W. Cahn, Il Nuovo Cimento (1943–1954) 10, 350 (1953)

    Google Scholar 

  10. R.E. Reed-Hill, W.D. Robertson, Trans. Met. Soc. AIME 220, 496 (1957)

    Google Scholar 

  11. A.M. Garde, E. Aigeltinger, R.E. Reed-Hill, Metall. Trans. B 4(10), 2461 (1973)

    Google Scholar 

  12. R.E. Reed-Hill, in The Inhomogeneity of Plastic Deformation, ed. by R.E. Reed-Hill. American Society for Metals (American Society for Metals, Metals Park, OH, 1973), pp. 285–311

    Google Scholar 

  13. A.H. Cottrell, B.A. Bilby, Philos. Mag. Series 7 42(329), 573 (1951)

    Google Scholar 

  14. N. Thompson, D. Millard, Philos. Mag. 43, 422 (1952)

    Google Scholar 

  15. S. Mendelson, J. Appl. Phys. 40(4), 1988 (1969)

    Google Scholar 

  16. S. Mendelson, Mater. Sci. Eng. 4(4), 231 (1969)

    Google Scholar 

  17. S. Mendelson, Nat. Bur. Stand. (US), Spec. Publ. 317, 495 (1970)

    Google Scholar 

  18. S. Mendelson, J. Appl. Phys. 41(5), 1893 (1970)

    Google Scholar 

  19. S. Mendelson, Scr. Metall. 4(1), 5 (1970)

    Google Scholar 

  20. K.P.D. Lagerlöf, J. Castaing, P. Pirouz, A.H. Heuer, Philos. Mag. A 82(15), 2841 (2002)

    Google Scholar 

  21. L. Capolungo, D. Spearot, M. Cherkaoui, D. McDowell, J. Qu, K. Jacob, Journal of the Mechanics and Physics of Solids 55(11), 2300 (2007)

    Google Scholar 

  22. L. Capolungo, I. Beyerlein, Phys. Rev. B 78(2), 024117 (2008)

    Google Scholar 

  23. L. Capolungo, I.J. Beyerlein, G.C. Kaschner, C.N. Tomé, Mater. Sci. Eng., A 513–514, 42 (2009)

    Google Scholar 

  24. I.J. Beyerlein, C.N. Tomé, Proc. R. Soc. London, Ser. A 466(2121), 2517 (2010)

    Google Scholar 

  25. I. Beyerlein, L. Capolungo, P. Marshall, R. McCabe, C. Tomé, Philosophical Magazine 90(16), 2161 (2010)

    Google Scholar 

  26. J. Wang, I.J. Beyerlein, C.N. Tomé, Scr. Mater. 63(7), 741 (2010)

    Google Scholar 

  27. J. Wang, R.G. Hoagland, J.P. Hirth, L. Capolungo, I.J. Beyerlein, C.N. Tomé, Scr. Mater. 61, 903 (2009)

    Google Scholar 

  28. J. Wang, J.P. Hirth, C.N. Tomé, Acta Mater. 57, 5521 (2009)

    Google Scholar 

  29. J. Wang, L. Liu, C. Tomé, S. Mao, S. Gong, Materials Research Letters 1(2), 81 (2013)

    Google Scholar 

  30. A. Ostapovets, A. Serra, Journal of materials science 52(1), 533 (2017)

    Google Scholar 

  31. C.D. Barrett, H. El Kadiri, Acta Materialia 63, 1 (2014)

    Google Scholar 

  32. C.D. Barrett, H. El Kadiri, Acta Materialia 70, 137 (2014)

    Google Scholar 

  33. H. El Kadiri, C.D. Barrett, J. Wang, C.N. Tomé, Acta Materialia 85, 354 (2015)

    Google Scholar 

  34. A. Serra, D.J. Bacon, Philos. Mag. A 73(2), 333 (1996)

    Google Scholar 

  35. Y. Liu, N. Li, S. Shao, M. Gong, J. Wang, R. McCabe, Y. Jiang, C. Tomé, Nature communications 7, 11577 (2016)

    Google Scholar 

  36. S. Plimpton, J. Comput. Phys. 117(1), 1 (1995)

    Google Scholar 

  37. X. Liu, J. Adams, F. Ercolessi, J. Moriarty, Modell. Simul. Mater. Sci. Eng. 4, 293 (1996)

    Google Scholar 

  38. A. Stukowski, Modelling and Simulation in Materials Science and Engineering 18 (2010)

    Google Scholar 

  39. R. Pond, Philos. Mag. A 47(6), 49 (1983)

    Google Scholar 

  40. R. Pond, W. Bollmann, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 292(1395), 449 (1979)

    Google Scholar 

  41. R. Pond, Dislocations and Properties of Real Materials (Institute of Metals, 1985), chap. Interfaces and dislocations, pp. 71–93

    Google Scholar 

  42. R. Pond, A. Bastaweesy, Le Journal de Physique Colloques 46(C4), 4 (1985)

    Google Scholar 

  43. R. Pond, M. Aindow, W. Clark, Scr. Metall. 21(7), 971 (1987)

    Google Scholar 

  44. A. Serra, D.J. Bacon, Philos. Mag. A 63(5), 1001 (1991)

    Google Scholar 

  45. A. Serra, D.J. Bacon, R.C. Pond, Acta Metall. 36, 3183 (1988)

    Google Scholar 

  46. A. Serra., R.C. Pond, D.J. Bacon, Acta Metall. Mater. 39(7), 1469 (1991)

    Google Scholar 

  47. A. Serra, D.J. Bacon, Mater. Sci. Forum 126, 69 (1993)

    Google Scholar 

  48. A. Serra, D.J. Bacon, Acta Metall. Mater. 43(12), 4465 (1995)

    Google Scholar 

  49. A. Serra, D.J. Bacon, R.C. Pond, Metall. Mater. Trans. A 33(3), 809 (2002)

    Google Scholar 

  50. C.D. Barrett, H. El Kadiri, Scripta Materialia 84, 15 (2014)

    Google Scholar 

  51. F. Wang, C.D. Barrett, R.J. McCabe, H. El Kadiri, L. Capolungo, S.R. Agnew, Acta Materialia 165, 471 (2019)

    Google Scholar 

  52. J. Wang, S. Yadav, J. Hirth, C. Tomé, I. Beyerlein, Materials Research Letters 1(3), 1 (2013)

    Google Scholar 

  53. J. Zhang, S.P. Joshi, J. Mech. Phys. Solids 60(5), 945 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher D. Barrett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barrett, C.D. (2020). The Role of Faceting in \( {\mathbf{\{ 10\bar{1}2\} }} \) Twin Nucleation. In: Jordon, J., Miller, V., Joshi, V., Neelameggham, N. (eds) Magnesium Technology 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36647-6_21

Download citation

Publish with us

Policies and ethics