Lee, T.D., Swanson, L.R., Hall, A.L.: What is repeated in a repetition? Effects of practice conditions on motor skill acquisition. Phys. Ther. 71, 150–156 (1991)
CrossRef
Google Scholar
Shea, C.H., Kohl, R., Indermill, C.: Contextual interference: contributions of practice. Acta Psychol. (Amst) 73, 145–157 (1990). https://doi.org/10.1016/0001-6918(90)90076-R
CrossRef
Google Scholar
Moxley, S.E.E.: Schema: the variability of practice hypothesis. J. Mot. Behav. 11, 65–70 (1979)
CrossRef
Google Scholar
Shea, J.B., Morgan, R.L.: Contextual interference effects on the acquisition, retention, and transfer of a motor skill. J. Exp. Psychol. 5, 179–187 (1979)
Google Scholar
Lee, T., Magill, R.: The locus of contextual interference in motor-skill acquisition. J. Exp. Psychol. Learn. Mem. Cogn. 9, 730–746 (1983)
CrossRef
Google Scholar
Apolinário-Souza, T., Santos Almeida, A.F., Lelis-Torres, N., Parma, J.O., Pereira, G.S., Lage, G.M.: Molecular mechanisms associated with the benefits of variable practice in motor learning. J. Mot. Behav. 51, 1–12 (2019). https://doi.org/10.1080/00222895.2019.1649997
CrossRef
Google Scholar
Tabone, C.J., Ramaswami, M.: Is NMDA receptor-coincidence detection required for learning and memory? Neuron 74, 767–769 (2012). https://doi.org/10.1016/j.neuron.2012.05.008
CrossRef
Google Scholar
Zito, K.: NMDA receptor function and physiological modulation. In: Encyclopedia of Neuroscience, pp. 1157–1164 (2009)
CrossRef
Google Scholar
Lisman, J.E.: Three Ca2+ levels affect plasticity differently: the LTP zone, the LTD zone and no man’s land. J. Physiol. 532, 285 (2001)
CrossRef
Google Scholar
Lisman, J., Yasuda, R., Raghavachari, S.: Mechanisms of CaMKII action in long-term potentiation. Nat. Rev. Neurosci. 6, 2166–2171 (2008). https://doi.org/10.1038/nrn3192
CrossRef
Google Scholar
Rumpel, S., Ledoux, J., Zador, A., Malinow, R.: Postsynaptic receptor trafficking underlying a form of associative learning. Science 308, 83–88 (2005). https://doi.org/10.1126/science.1103944
CrossRef
Google Scholar
Karni, A., et al.: The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc. Natl. Acad. Sci. 95, 861–868 (1998). https://doi.org/10.1073/pnas.95.3.861
CrossRef
Google Scholar
Smith, M.A., Ghazizadeh, A., Shadmehr, R.: Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol. 4, 1035–1043 (2006). https://doi.org/10.1371/journal.pbio.0040179
CrossRef
Google Scholar
Ungerleider, L., Doyon, J., Karni, A.: Imaging brain plasticity during motor skill learning. Neurobiol. Learn. Mem. 78, 553–564 (2002). https://doi.org/10.1006/nlme.2002.4091
CrossRef
Google Scholar
Thoroughman, K.A., Shadmehr, R.: Learning of action trough adaptative combination of motor primitives. Nature 407, 742–747 (2000). https://doi.org/10.1038/35037588.Learning
CrossRef
Google Scholar
Scheidt, R.A., Dingwell, J.B., Mussa-ivaldi, F.A., Robert, A., Dingwell, J.B., Ferdinando, A.: Learning to Move Amid Uncertainty. J. Neurophysiol. 86, 971–985 (2001). citeulike-article-id:406856
CrossRef
Google Scholar
Albert, S.T., Shadmehr, R.: Estimating properties of the fast and slow adaptive processes during sensorimotor adaptation. J. Neurophysiol. 119, 1367–1393 (2017). https://doi.org/10.1152/jn.00197.2017
CrossRef
Google Scholar
Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976). https://doi.org/10.1016/0003-2697(76)90527-3
CrossRef
Google Scholar
Grosshans, D.R., Clayton, D.A., Coultrap, S.J., Browning, M.D.: LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat. Neurosci. 5, 27–33 (2002). https://doi.org/10.1038/nn779
CrossRef
Google Scholar
Trewartha, K.M., Garcia, A., Wolpert, D.M., Flanagan, J.R.: Fast but fleeting: adaptive motor learning processes associated with aging and cognitive decline. J. Neurosci. 34, 13411–13421 (2014). https://doi.org/10.1523/JNEUROSCI.1489-14.2014
CrossRef
Google Scholar
Schweighofer, N., et al.: Mechanisms of the contextual interference effect in individuals poststroke. J. Neurophysiol. 106, 2632–2641 (2011). https://doi.org/10.1152/jn.00399.2011
CrossRef
Google Scholar
Lage, G.M., Vieira, M.M., Palhares, L., Ugrinowitsch, H., Benda, R.: Practice schedules and number of skills as contextual interference factors in the learning of positioning timing tasks. J. Hum. Mov. Stud. 50, 185–200 (2006)
Google Scholar
Silva, A.B., Lage, G.M., Gonçalves, W., Palhares, L.R., Ugrinowitsch, R., Benda, H.: Contextual interference and manipulation of generalized motor programs and parameters in timing tasks. J. Sport Exerc. Psychol. 26, 173 (2004)
Google Scholar
Schmidt, R.A.: A schema theory of discrete motor skill learning. Psychol. Rev. 82, 225–260 (1975)
CrossRef
Google Scholar
Shea, J.B., Zimny, S.T.: Context effects in memory and learning movement information. Mem. Control Action. 12, 345–365 (1983)
CrossRef
Google Scholar