Skip to main content

Influence of Contact Network Topology on the Spread of Tuberculosis

  • Conference paper
  • First Online:
Computational Neuroscience (LAWCN 2019)

Abstract

This paper presents the influence of the complex networks topology on the spread of Tuberculosis with the use of the Individual-Based Model (IBM). Five complex network models were used with the IBM, namely, random, small world, scale-free, modular and hierarchical models. For every model, we applied the usual topological properties available in literature for the characterization of complex networks. Afterwards, we verified the topological effect of the contact networks in the evolution of tuberculosis and it was observed that different contact networks result in different epidemic thresholds \((\beta ^*)\) for the spread of tuberculosis. More specifically, we noted that networks that have greater heterogeneity of connections need a lower \(\beta ^*\), however when the value of the infection rate \((\beta )\) is large, the number of individuals infected are similar. It is believed that this observation may contribute to actions to reduce and eradicate the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  2. Dodds, P.S., Watts, D.J., Sabel, C.F.: Information exchange and the robustness of organizational networks. Proc. Nat. Acad. Sci. 100(21), 12516–12521 (2003)

    Article  Google Scholar 

  3. Edling, C.R., Åberg, Y., Liljeros, F., Amaral, L.A.N., Stanley, H.E.: The web of human sexual contacts. Nature 411(6840), 907–908 (2002)

    Google Scholar 

  4. Erdös, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  5. Keeling, M.J., Grenfell, B.T.: Individual-based perspectives on R0. J. Theor. Biol. 203(1), 51–61 (2000)

    Article  Google Scholar 

  6. Moreno, V., et al.: The role of mobility and health disparities on the transmission dynamics of tuberculosis. Theor. Biol. Med. Modell. 14(1), 1–17 (2017)

    Article  Google Scholar 

  7. Nepomuceno, E.G., Takahashi, R.H.C., Aguirre, L.A.: Individual based-model (IBM): an alternative framework for epidemiological compartment models. Biometric Braz. J./Revista Brasileira de Biometria 34(1), 133–162 (2016)

    Google Scholar 

  8. Nepomuceno, E.G., Barbosa, A.M., Silva, M.X., Perc, M.: Individual-based modelling and control of bovine brucellosis. Roy. Soc. Open Sci. 5(5), 180200 (2018)

    Article  Google Scholar 

  9. Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66(1), 016128 (2002)

    Article  MathSciNet  Google Scholar 

  10. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, New York (2010)

    Book  Google Scholar 

  11. World Health Organization, et al.: Global tuberculosis report 2016. World Health Organization (2016)

    Google Scholar 

  12. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Revi. Mod. Phys. 87(3), 925–979 (2015)

    Article  MathSciNet  Google Scholar 

  13. Pinto, E.R., Campanharo, A.S.L.O.: Estudo do efeito topológico das redes contato na propagação de doenças infecciosas. Proc. Ser. Braz. Soc. Comput. Appl. Math. 6(2), 1–7 (2018)

    Google Scholar 

  14. Solé, R.V., Gamarra, J.G., Ginovart, M., López, D.: Controlling chaos in ecology: from deterministic to individual-based models. Bull. Math. Biol. 61(6), 1187–1207 (1999)

    Article  Google Scholar 

  15. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393(6684), 440 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

E. R. Pinto acknowledges the support of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), grant 1770124 and supported by resources supplied by the Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP). A. S. L. O. Campanharo acknowledges the support of Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), grant 2018/25358-9. All codes were written in C language and all figures were generated with XmGrace and Pajek.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriana S. L. O. Campanharo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pinto, E.R., Nepomuceno, E.G., Campanharo, A.S.L.O. (2019). Influence of Contact Network Topology on the Spread of Tuberculosis. In: Cota, V., Barone, D., Dias, D., Damázio, L. (eds) Computational Neuroscience. LAWCN 2019. Communications in Computer and Information Science, vol 1068. Springer, Cham. https://doi.org/10.1007/978-3-030-36636-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36636-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36635-3

  • Online ISBN: 978-3-030-36636-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics