Abdellaoui, R., Foulquié, P., Texier, N., Faviez, C., Burgun, A., Schück, S.: Detection of cases of noncompliance to drug treatment in patient forum posts: topic model approach. J. Med. Internet Res. 20(3), e85 (2018)
CrossRef
Google Scholar
Carvalho, D., Marcacini, R., Lucena, C., Rezende, S.: A process to support analysts in exploring and selecting content from online forums. Soc. Netw. 3(02), 86 (2014)
CrossRef
Google Scholar
Chen, A.T., Zhu, S.H., Conway, M.: What online communities can tell us about electronic cigarettes and hookah use: a study using text mining and visualization techniques. J. Med. Internet Res. 17(9), e220 (2015)
CrossRef
Google Scholar
Cho, H., Silver, N., Na, K., Adams, D., Luong, K.T., Song, C.: Visual cancer communication on social media: an examination of content and effects of# melanomasucks. J. Med. Internet Res. 20(9), e10501 (2018)
CrossRef
Google Scholar
Choo, J., Lee, C., Reddy, C.K., Park, H.: UTOPIAN: user-driven topic modeling based on interactive nonnegative matrix factorization. IEEE Trans. Vis. Comput. Graphics 19(12), 1992–2001 (2013)
CrossRef
Google Scholar
Clark, T., Kinoshita, J.: Alzforum and SWAN: the present and future of scientific web communities. Briefings Bioinf. 8(3), 163–171 (2007)
CrossRef
Google Scholar
Das, S., et al.: Pain research forum: application of scientific social media frameworks in neuroscience. Front. Neuroinf. 8, 21 (2014)
CrossRef
Google Scholar
De Choudhury, M., De, S.: Mental health discourse on reddit: self-disclosure, social support, and anonymity. In: Eighth International AAAI Conference on Weblogs and Social Media (2014)
Google Scholar
Debuse, J., de la Iglesia, B., Howard, C., Rayward-Smith, V.: Building the KDD roadmap. In: Roy, R. (eds.) Industrial Knowledge Management, pp. 179–196. Springer, London (2001). https://doi.org/10.1007/978-1-4471-0351-6_12
CrossRef
Google Scholar
Fan, W., Gordon, M.D.: The power of social media analytics. Commun. ACM 57(6), 74–81 (2014)
CrossRef
Google Scholar
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Commun. ACM 39(11), 27–34 (1996)
CrossRef
Google Scholar
Glaser, B.G., Strauss, A.L.: Discovery of Grounded Theory: Strategies for Qualitative Research. Routledge (2017)
Google Scholar
Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier (2011)
Google Scholar
Hu, Y., Boyd-Graber, J., Satinoff, B., Smith, A.: Interact. Top. Model. Mach. Learn. 95(3), 423–469 (2014)
MathSciNet
CrossRef
Google Scholar
Hutto, C.J., Gilbert, E.: VADER: a parsimonious rule-based model for sentiment analysis of social media text. In: Eighth International AAAI Conference on Weblogs and Social Media (2014)
Google Scholar
Kim, S.J., Marsch, L.A., Hancock, J.T., Das, A.K.: Scaling up research on drug abuse and addiction through social media big data. J. Med. Internet Res. 19(10), e353 (2017)
CrossRef
Google Scholar
Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788 (1999)
CrossRef
Google Scholar
Liu, B.: Sentiment analysis and opinion mining. Synth. lect. Hum. Lang. Technol. 5(1), 1–167 (2012)
CrossRef
Google Scholar
Matthews, K.A., et al.: Racial and ethnic estimates of alzheimer’s disease and related dementias in the united states (2015–2060) in adults aged\(\geqslant \) 65 years. Alzheimer’s Dement. 15(1), 17–24 (2019)
CrossRef
Google Scholar
Meshi, D., Tamir, D.I., Heekeren, H.R.: The emerging neuroscience of social media. Trends Cogn. Sci. 19(12), 771–782 (2015)
CrossRef
Google Scholar
Muller, M., Guha, S., Baumer, E.P., Mimno, D., Shami, N.S.: Machine learning and grounded theory method: convergence, divergence, and combination. In: Proceedings of the 19th International Conference on Supporting Group Work, pp. 3–8. ACM (2016)
Google Scholar
O’callaghan, D., Greene, D., Carthy, J., Cunningham, P.: An analysis of the coherence of descriptors in topic modeling. Expert Syst. Appl. 42(13), 5645–5657 (2015)
CrossRef
Google Scholar
Qiu, B., et al.: Get online support, feel better-sentiment analysis and dynamics in an online cancer survivor community. In: 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing, pp. 274–281. IEEE (2011)
Google Scholar
Shneiderman, B., Preece, J., Pirolli, P.: Realizing the value of social media requires innovative computing research. Commun. ACM 54(9), 34–37 (2011)
CrossRef
Google Scholar
Song, Y., Pan, S., Liu, S., Zhou, M.X., Qian, W.: Topic and keyword re-ranking for LDA-based topic modeling. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 1757–1760. ACM (2009)
Google Scholar
Urquhart, C., Fernández, W.: Using grounded theory method in information systems: the researcher as blank slate and other myths. In: Willcocks, L.P., Sauer, C., Lacity, M.C. (eds.) Enacting Research Methods in Information Systems: Volume 1, pp. 129–156. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29266-3_7
CrossRef
Google Scholar
Vasconcellos-Silva, P.R., Carvalho, D., Lucena, C.: Word frequency and content analysis approach to identify demand patterns in a virtual community of carriers of hepatitis C. Interact. J. Med. Res. 2(2), e12 (2013)
CrossRef
Google Scholar
Weninger, T., Zhu, X.A., Han, J.: An exploration of discussion threads in social news sites: a case study of the reddit community. In: 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013), pp. 579–583. IEEE (2013)
Google Scholar
Zheng, K., Li, A., Farzan, R.: Exploration of online health support groups through the lens of sentiment analysis. In: Chowdhury, G., McLeod, J., Gillet, V., Willett, P. (eds.) iConference 2018. LNCS, vol. 10766, pp. 145–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78105-1_19
CrossRef
Google Scholar
Zou, C., Hou, D.: LDA analyzer: a tool for exploring topic models. In: 2014 IEEE International Conference on Software Maintenance and Evolution, pp. 593–596. IEEE (2014)
Google Scholar