Skip to main content

Application of Machine Learning Approaches to Identify New Anticonvulsant Compounds Active in the 6 Hz Seizure Model

  • 394 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 1068)

Abstract

Epilepsy is the second most common chronic brain disorder, affecting 65 million people worldwide. According to the NIH’s Epilepsy Therapy Screening Program, evaluation of potential new antiepileptic drug candidates begins with assessment of their protective effects in two acute seizure models in mice, the Maximal Electroshock Seizure test and the 6 Hz test. The latter elicits partial seizures through an electrical stimulus of 44 mA, at which many clinically established anti-seizure drugs do not suppress seizures. The inclusion of this “high-hurdle” acute seizure assay at the initial stage of the drug identification phase is intended to increase the probability that agents with improved efficacy will be detected. In this work, we have used machine learning approximations to develop in silico models capable of identifying novel anticonvulsant drugs with protective effects in the 6 Hz seizure model. Linear classifiers based on Dragon conformation-independent descriptors were generated through an in-house routine in R environment and validated through standard validation procedures. They were later combined through different ensemble learning schemes. The best ensemble comprised the 29 best-performing models combined using the MIN operator. With the objective of finding new drug repurposing opportunities (i.e. identifying second or further therapeutic indications, in our case anticonvulsant activity, in existing drugs), such model ensemble was applied in a virtual screening campaign of DrugBank and Sweetlead databases. 28 approved drugs were identified as potential protective agents in the 6 Hz model. The present study constitutes an example of the use of machine learning approximations to systematically guide drug repurposing projects.

Keywords

  • Machine learning
  • Ensemble learning
  • 6 Hz seizure model
  • Anticonvulsant drugs
  • Virtual screening
  • Epilepsy
  • Drug repurposing

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-36636-0_1
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-36636-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. World Health Organization: Fact Sheet Epilepsy. https://www.who.int/news-room/fact-sheets/detail/epilepsy

  2. Xia, L., Ou, S., Pan, S.: Initial response to antiepileptic drugs in patients with newly diagnosed epilepsy as a predictor of long-term outcome. Front. Neurol. 8, 658 (2017). https://doi.org/10.3389/fneur.2017.00658

    CrossRef  Google Scholar 

  3. Corsello, S.M., et al.: The Drug Repurposing Hub: a next-generation drug library and information resource. Nat. Med. 23, 405–408 (2017). https://doi.org/10.1038/nm.4306

    CrossRef  Google Scholar 

  4. Talevi, A.: Drug repositioning: current approaches and their implications in the precision medicine era. Expert. Rev. Precis. Med. Drug Dev. 3, 49–61 (2018). https://doi.org/10.1080/23808993.2018.1424535

    CrossRef  Google Scholar 

  5. Barton, M.E., Klein, B.D., Wolf, H.H., White, H.S.: Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res. 47, 217–227 (2001). https://doi.org/10.1016/S0920-1211(01)00302-3

    CrossRef  Google Scholar 

  6. Löscher, W.: Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 20(5), 359–368 (2011). https://doi.org/10.1016/j.seizure.2011.01.003

    CrossRef  Google Scholar 

  7. Vyskovsky, R., Schwarz, D., Janousova, E., Kasparek, T.: Random subspace ensemble artificial neural networks for first-episode Schizophrenia classification. In: Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (Gdansk: FedCSIS), pp. 317–321 (2016). https://doi.org/10.15439/2016f333

  8. Kamiński, K., Wiklik, B., Obniska, J.: Synthesis and anticonvulsant activity of new N-phenyl-2-(4-phenylpiperazin-1-yl) acetamide derivatives. Med. Chem. Res. 24(7), 3047–3061 (2015). https://doi.org/10.1007/s00044-015-1360-6

    CrossRef  Google Scholar 

  9. Dawidowski, M., Lewandowski, W., Turło, J.: Synthesis of new perhydropyrrolo [1, 2-a] pyrazine derivatives and their evaluation in animal models of epilepsy. Molecules 19(10), 15955–15981 (2014). https://doi.org/10.3390/molecules191015955

    CrossRef  Google Scholar 

  10. Coleman, N., et al.: The riluzole derivative 2-amino-6-trifluoromethylthio-benzothiazole (SKA-19), a mixed K2Ca activator and NaV blocker, is a potent novel anticonvulsant. Neurotherapeutics 12(1), 234–249 (2015). https://doi.org/10.1007/s13311-014-0305-y

    CrossRef  Google Scholar 

  11. Obniska, J., Chlebek, I., Kamiński, K., Bojarski, A.J., Satała, G.: Synthesis, anticonvulsant activity and 5-HT1A/5-HT7 receptors affinity of 1-[(4-arylpiperazin-1-yl)-propyl]-succinimides. Pharmacol. Rep. 64(2), 326–335 (2012)

    CrossRef  Google Scholar 

  12. Xian-Qing, D., Ming-Xia, S., Guo-Hua, G., Shi-Ben, W., Zhe-Shan, Q.: Synthesis and anticonvulsant evaluation of some new 6-(substituted-phenyl) thiazolo [3, 2-b][1, 2, 4]triazole derivatives in mice. Iran. J. Pharm. Res. 13(2), 459–469 (2014)

    Google Scholar 

  13. Byrtus, H., Obniska, J., Czopek, A., Kamiński, K., Pawłowski, M.: Synthesis and anticonvulsant activity of new N-Mannich bases derived from 5-cyclopropyl-5-phenyl- and 5-cyclopropyl-5-(4-chlorophenyl)-imidazolidine-2, 4-diones. Bioorg. Med. Chem. 19(20), 6149–6156 (2011). https://doi.org/10.1016/j.bmc.2011.08.017

    CrossRef  Google Scholar 

  14. Florek-Luszczki, M., Wlaz, A., Luszczki, J.J.: Interactions of levetiracetam with carbamazepine, phenytoin, topiramate and vigabatrin in the mouse 6 Hz psychomotor seizure model – A type II isobolographic analysis. Eur. J. Pharmacol. 723, 410–418 (2014). https://doi.org/10.1016/j.ejphar.2013.10.063

    CrossRef  Google Scholar 

  15. Dawidowski, M., Turło, M.: Multicomponent synthesis and anticonvulsant activity of monocyclic 2, 6-diketopiperazine derivatives. Med. Chem. Res. 23(4), 2007–2018 (2014). https://doi.org/10.1007/s00044-013-0800-4

    CrossRef  Google Scholar 

  16. Ugale, V.G., Bari, S.B.: Structural exploration of quinazolin-4 (3H)-ones as anticonvulsants: rational design, synthesis, pharmacological evaluation, and molecular docking studies. Arch. Pharm. 349(11), 864–880 (2016). https://doi.org/10.1002/ardp.201600218

    CrossRef  Google Scholar 

  17. Tomaciello, F., Leclercq, K., Kaminski, R.M.: Resveratrol lacks protective activity against acute seizures in mouse models. Neurosci. Lett. 632, 199–203 (2016). https://doi.org/10.1016/j.neulet.2016.09.002

    CrossRef  Google Scholar 

  18. Sałat, K., et al.: Novel, highly potent and in vivo active inhibitor of GABA transporter subtype 1 with anticonvulsant, anxiolytic, antidepressant and antinociceptive properties. Neuropharmacol. 113(Pt A), 331–342 (2017). https://doi.org/10.1016/j.neuropharm.2016.10.019

    CrossRef  Google Scholar 

  19. Gunia-Krzyżak, A., et al.: Structure-anticonvulsant activity studies in the group of (E)-N-cinnamoyl aminoalkanols derivatives monosubstituted in phenyl ring with 4-Cl, 4-CH3 or 2-CH3. Bioorg. Med. Chem. 25(2), 471–482 (2017). https://doi.org/10.1016/j.bmc.2016.11.014

    CrossRef  Google Scholar 

  20. Zolkowska, D., Dhir, A., Krishnan, K., Covey, D.F., Rogawski, M.A.: Anticonvulsant potencies of the enantiomers of the neurosteroids androsterone and etiocholanolone exceed those of the natural forms. Psychopharmacol. (Berl). 231(17), 3325–3332 (2014). https://doi.org/10.1007/s00213-014-3546-x

    CrossRef  Google Scholar 

  21. Shekh-Ahmad, T., et al.: Enantioselective pharmacodynamic and pharmacokinetic analysis of two chiral CNS-active carbamate derivatives of valproic acid. Epilepsia 55(12), 1944–1952 (2014). https://doi.org/10.1111/epi.12857

    CrossRef  Google Scholar 

  22. Kamiński, K., Wiklik, B., Obniska, J.: Synthesis, anticonvulsant properties, and SAR analysis of differently substituted pyrrolidine-2, 5-diones and piperidine-2, 6-diones. Arch. Pharm. (Weinheim) 347(11), 840–852 (2014). https://doi.org/10.1002/ardp.201400179

    CrossRef  Google Scholar 

  23. Orellana-Paucar, A.M., et al.: Insights from zebrafish and mouse models on the activity and safety of ar-turmerone as a potential drug candidate for the treatment of epilepsy. PLoS ONE 8(12), e81634 (2013). https://doi.org/10.1371/journal.pone.0081634

    CrossRef  Google Scholar 

  24. Nieoczym, D., Socała, K., Jedziniak, P., Olejnik, M., Wlaź, P.: Effect of sildenafil, a selective phosphodiesterase 5 inhibitor, on the anticonvulsant action of some antiepileptic drugs in the mouse 6-Hz psychomotor seizure model. Prog. Neuropsychopharmacol. Biol. Psychiatry 47, 104–110 (2012). https://doi.org/10.1016/j.pnpbp.2013.08.009

    CrossRef  Google Scholar 

  25. Dawidowski, M., Wilczek, M., Kubica, K., Skolmowski, M., Turło, J.: Structure-activity relationships of the aromatic site in novel anticonvulsant pyrrolo [1, 2-a]pyrazine derivatives. Bioorg. Med. Chem. Lett. 23(22), 6106–6110 (2013). https://doi.org/10.1016/j.bmcl.2013.09.022

    CrossRef  Google Scholar 

  26. Shaikh, M.F., Tan, K.N., Borges, K.: Anticonvulsant screening of luteolin in four mouse seizure models. Neurosci. Lett. 550, 195–199 (2013). https://doi.org/10.1016/j.neulet.2013.06.065

    CrossRef  Google Scholar 

  27. Buenafe, O.E., et al.: Tanshinone IIA exhibits anticonvulsant activity in zebrafish and mouse seizure models. ACS. Chem. Neurosci. 4(11), 1479–1487 (2013). https://doi.org/10.1021/cn400140e

    CrossRef  Google Scholar 

  28. Kumar, D., Kumar Sharma, V., Kumar, R., Singh, T., Singh, H., Singh, A.D., Roy, R.K.: Design, synthesis and anticonvulsant activity of some new 5, 7-dibromoisatin semicarbazone derivatives. EXCLI J. 12, 628–640 (2013)

    Google Scholar 

  29. Wlaz, A., Kondrat-Wrobel, M.W., Zaluska, K., Kochman, E., Rekas, A.R., Luszczki, J.J.: Synergistic interaction of levetiracetam with gabapentin in the mouse 6 Hz psychomotor seizure model – A type II isobolographic analysis. Curr. Issues Pharm. Med. Sci. 28(3), 204–207 (2015). https://doi.org/10.1515/cipms-2015-0073

    CrossRef  Google Scholar 

  30. Shandra, A., Shandra, P., Kaschenko, O., Matagne, A., Stöhr, T.: Synergism of lacosamide with established antiepileptic drugs in the 6-Hz seizure model in mice. Epilepsia 54(7), 1167–1175 (2013). https://doi.org/10.1111/epi.12237

    CrossRef  Google Scholar 

  31. Ahsan, M.J., Khalilullah, H., Yasmin, S., Singh Jadav, S., Stables, J.P.: Synthesis and anticonvulsant evaluation of 2-(substituted benzylidene/ethylidene)-N-(substituted phenyl) hydrazinecarboxamide analogues. Med. Chem. Res. 22(6), 2746–2754 (2013). https://doi.org/10.1007/s00044-012-0271-z

    CrossRef  Google Scholar 

  32. Tripathi, L., Kumar, P.: Augmentation of GABAergic neurotransmission by novel N-(substituted)-2-[4-(substituted) benzylidene] hydrazinecarbothioamides—a potential anticonvulsant approach. Eur. J. Med. Chem. 64, 477–487 (2013). https://doi.org/10.1016/j.ejmech.2013.04.019

    CrossRef  Google Scholar 

  33. Ulloora, S., Shabaraya, R., Ranganathan, R., Adhikari, A.V.: Synthesis, anticonvulsant and anti-inflammatory studies of new 1, 4-dihydropyridin-4-yl-phenoxyacetohydrazones. Eur. J. Med. Chem. 70, 341–349 (2013). https://doi.org/10.1016/j.ejmech.2013.10.010

    CrossRef  Google Scholar 

  34. Zuliani, V., Rivara, M.: In vivo screening of diarylimidazoles as anticonvulsant agents. Med. Chem. Res. 21(11), 3428–3434 (2011). https://doi.org/10.1007/s00044-011-9869-9

    CrossRef  Google Scholar 

  35. Kumar, P., Shrivastava, B., Pandeya, S.M., Tripathi, L., Stables, J.P.: Design, synthesis, and anticonvulsant evaluation of some novel 1, 3 benzothiazol-2-yl hydrazones/acetohydrazones. Med. Chem. Res. 21(9), 2428–2442 (2012). https://doi.org/10.1007/s00044-011-9768-0

    CrossRef  Google Scholar 

  36. Hebeisen, S., et al.: Eslicarbazepine and the enhancement of slow inactivation of voltage-gated sodium channels: a comparison with carbamazepine, oxcarbazepine and lacosamide. Neuropharmacology 89, 122–1235 (2015). https://doi.org/10.1016/j.neuropharm.2014.09.008

    CrossRef  Google Scholar 

  37. Ahsan, M.J., Khalilullah, H., Stables, J.P., Govindasamy, J.: Synthesis and anticonvulsant activity of 3a, 4-dihydro-3H-indeno [1, 2-c] pyrazole-2-carboxamide/carbothioamide analogues. J. Enzyme Inhib. Med. Chem. 28(3), 644–650 (2013). https://doi.org/10.3109/14756366.2012.663364

    CrossRef  Google Scholar 

  38. Tosh, D.K., et al.: Structural sweet spot for A1 adenosine receptor activation by truncated (N)-methanocarba nucleosides: receptor docking and potent anticonvulsant activity. J. Med. Chem. 55(18), 8075–8090 (2012)

    CrossRef  Google Scholar 

  39. Mishra, R.K., Baker, M.T.: Ortho Substituent effects on the anticonvulsant properties of 4-hydroxy-trifluoroethyl phenols. Bioorg. Med. Chem. Lett. 22(17), 5608–5611 (2012). https://doi.org/10.1016/j.bmcl.2012.07.001

    CrossRef  Google Scholar 

  40. Wang, D.D., Englot, D.J., Garcia, P.A., Lawton, M.T., Young, W.L.: Minocycline and tetracycline-class antibiotics are protective against partial seizures in vivo. Epilepsy Behav. 24(3), 314–318 (2012). https://doi.org/10.1016/j.yebeh.2012.03.035

    CrossRef  Google Scholar 

  41. Dawidowski, M., Herold, F., Chodkowski, A., Kleps, J.: Synthesis and anticonvulsant activity of novel 2, 6-diketopiperazine derivatives. Part 2: Perhydropyrido [1, 2-a] pyrazines. Eur. J. Med. Chem. 48, 347–353 (2012). https://doi.org/10.1016/j.ejmech.2011.11.032

    CrossRef  Google Scholar 

  42. Gasior, M., Socała, K., Nieoczym, D., Wlaź, P.: Clavulanic acid does not affect convulsions in acute seizure tests in mice. J. Neural. Transm. 119(1), 1–6 (2012). https://doi.org/10.1007/s00702-011-0662-1

    CrossRef  Google Scholar 

  43. Perez-Llamas, C., Lopez-Bigas, N.: Gitools: analysis and visualisation of genomic data using interactive heat-maps. PLoS ONE 6, e19541 (2011). https://doi.org/10.1371/journal.pone.0019541

    CrossRef  Google Scholar 

  44. Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y.D., Lee, K.H., Tropsha, A.: Rational selection of training and test sets for the development of validated QSAR models. J. Comput. Aided Mol. Des. 17, 241–253 (2003). https://doi.org/10.1023/A:1025386326946

    CrossRef  Google Scholar 

  45. Martin, T.M., et al.: Does rational selection of training and test sets improve the outcome of QSAR modeling? J. Chem. Inf. Model. 52, 2570–2578 (2012). https://doi.org/10.1021/ci300338w

    CrossRef  Google Scholar 

  46. Everitt, B.S., Landau, S., Leese, M., Stahl, D.: Cluster Analysis, 5th edn. Wiley, West Sussex (2011)

    CrossRef  Google Scholar 

  47. El Habib Daho, M., Chikh, M.A.: Combining bootstrapping samples, random subspaces and random forests to build classifiers. J. Med. Imaging Health Inf. 5, 539–544 (2015). https://doi.org/10.1166/jmihi.2015.1423

    CrossRef  Google Scholar 

  48. Yu, G., Zhang, G., Domeniconi, C., Yu, Z., You, J.: Semi-supervised classification based on random subspace dimensionality reduction. Pattern Recogn. 45, 1119–1135 (2012). https://doi.org/10.1016/j.patcog.2011.08.024

    CrossRef  MATH  Google Scholar 

  49. Toropova, A.P., Toropov, A.A.: CORAL: binary classifications (active/inactive) for drug-induced liver injury. Toxicol. Lett. 268, 51–57 (2017). https://doi.org/10.1016/j.toxlet.2017.01.011

    CrossRef  Google Scholar 

  50. Gramatica, P.: On the development and validation of QSAR models. Methods Mol. Biol. 930, 499–526 (2013). https://doi.org/10.1007/978-1-62703-059-5_21

    CrossRef  Google Scholar 

  51. Roy, K., Mitra, I.: On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Comb. Chem. High Throughput Screen. 14(6), 450–474 (2011). https://doi.org/10.2174/138620711795767893

    CrossRef  Google Scholar 

  52. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    CrossRef  Google Scholar 

  53. Robin, X., et al.: pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinf. 12, 77 (2011). https://doi.org/10.1186/1471-2105-12-77

    CrossRef  Google Scholar 

  54. Truchon, J.F., Bayly, C.L.: Evaluating virtual screening methods: good and bad metrics for the “early recognition” problem. J. Chem. Inf. Model. 47, 488–508 (2007). https://doi.org/10.1021/ci600426e

    CrossRef  Google Scholar 

  55. Yabuuchi, H., et al.: Analysis of multiple compound–protein interactions reveals novel bioactive molecules. Mol. Syst. Biol. 7, 472, 1–12 (2011). https://doi.org/10.1038/msb.2011.5

    CrossRef  Google Scholar 

  56. Lätti, S., Niinivehmas, S., Pentikäinen, O.T.: Rocker: open source, easy-to-use tool for AUC and enrichment calculations and ROC visualization. J. Cheminformatics 8(1), 45 (2016). https://doi.org/10.1186/s13321-016-0158-y

    CrossRef  Google Scholar 

  57. Mysinger, M.M., Carchia, M., Irwin, J.J., Shoichet, B.K.: Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem. 55(14), 6582–6594 (2012). https://doi.org/10.1021/jm300687e

    CrossRef  Google Scholar 

  58. Alberca, L.N., et al.: Cascade ligand-and structure-based virtual screening to identify new trypanocidal compounds inhibiting putrescine uptake. Front. Cell. Infect. Microbiol. 8, 173 (2018). https://doi.org/10.3389/fcimb.2018.00173

    CrossRef  Google Scholar 

  59. Law, V., et al.: DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 42, D1091–D1097 (2014). https://doi.org/10.1093/nar/gkt1068

    CrossRef  Google Scholar 

  60. Novick, P.A., Ortiz, O.F., Poelman, J., Abdulhay, A.Y., Pande, V.S.: SWEETLEAD: an in silico database of approved drugs, regulated chemicals, and herbal isolates for computer-aided drug discovery. PLoS ONE 8(11), e79568 (2013). https://doi.org/10.1371/journal.pone.0079568

    CrossRef  Google Scholar 

  61. Talevi, A., Carrillo, C., Comini, M.: The thiol-polyamine metabolism of Trypanosoma cruzi: molecular targets and drug repurposing strategies. Curr. Med. Chem. 26 (2019). https://doi.org/10.2174/0929867325666180926151059

  62. Oprea, T.I., Overington, J.P.: Computational and practical aspects of drug repositioning. Assay Drug Dev. Technol. 13, 299–306 (2015). https://doi.org/10.1089/adt.2015.29011.tiodrrr

    CrossRef  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the following public and non-profit organisations: National University of La Plata (UNLP) and Argentinean National Council of Science and Technological Research (CONICET).

Funding

Support was received from the National University of La Plata (UNLP) [grant X729].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Bellera .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 556 kb)

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Goicoechea, S. et al. (2019). Application of Machine Learning Approaches to Identify New Anticonvulsant Compounds Active in the 6 Hz Seizure Model. In: Cota, V., Barone, D., Dias, D., Damázio, L. (eds) Computational Neuroscience. LAWCN 2019. Communications in Computer and Information Science, vol 1068. Springer, Cham. https://doi.org/10.1007/978-3-030-36636-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36636-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36635-3

  • Online ISBN: 978-3-030-36636-0

  • eBook Packages: Computer ScienceComputer Science (R0)