Method for the Improvement of Knee Angle Accuracy Based on Kinect and IMU: Preliminary Results

  • D. Mayorca-TorresEmail author
  • Julio C. Caicedo-Eraso
  • Diego H. Peluffo-Ordoñez
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1068)


One way to identify musculoskeletal disorders in the lower limb is through the functional examination where the ranges of normality of the joints are evaluated. Currently, this test can be performed with technological support, with optical sensors and inertial measurement sensors (IMU) being the most used. Kinect has been widely used for the functional evaluation of the human body, however, there are some limits to the movements made in the depth plane and when there is occlusion of the limbs. Inertial measurement sensors (IMU) allow orientation and acceleration measurements to be obtained with a high sampling rate, with some restrictions associated with drift. This article proposes a methodology that combines the acceleration measures of the IMU and kinect sensors in two planes of movement (Frontal and sagittal). These measurements are filtered in the preprocessing stage according to a Kalman filter and are obtained from a mathematical equation that allows them to be merged. The fusion system data obtains acceptable RMS error values of 5.5\(^{\circ }\) and an average consistency of 92.5% for the sagittal plane with respect to the goniometer technique. The data is shown through an interface that allows the visualization of knee joint kinematic data, as well as tools for the analysis of signals by the health professional.


Multisensor fusion Orientation estimation Motion analysis Knee flexion 



This research work is supported by the seed group ‘SIngBio Seedbed of Research in Engineering and Biomedical Sciences’ of the Universidad de Caldas. In the same way, this work was supported by the Mechatronic Engineering research Group of the Mariana University. Also the authors are very grateful for the valuable support given by SDAS Research Group (


  1. 1.
    Rienk, P., Jensen, P.L., Tony, L.: Los trastornos musculoesqueléticos de origen laboral en los Estados miembros de la Unión Europea (2010)Google Scholar
  2. 2.
    Asociación internacional de la Seguridad Social, La prevención de las enfermedades profesionales (2013)Google Scholar
  3. 3.
    De Jaén, U.: Tratamiento de la tendinopatía rotulianaGoogle Scholar
  4. 4.
    D’Souza, J., Franzblau, A., Werner, R.: Review of epidemiologic studies on occupational factors and lower extremity musculoskeletal and vascular disorders and symptoms. J. Occup. Rehabil. 15(2), 129–165 (2005)CrossRefGoogle Scholar
  5. 5.
    Cifuentes, C., Martínez, F., Romero, E.: Análisis teórico y computacional de la marcha normal y patológica: una revisión. Rev. Med. 18(2), 182 (2010)CrossRefGoogle Scholar
  6. 6.
    Mariana Haro, D.: Laboratorio de análisis de marcha y movimiento, Rev. Médica Clínica Las Condes, 25(2), 237–247 (2014)CrossRefGoogle Scholar
  7. 7.
    Støvring, N.M., et al.: Multi-kinect skeleton fusion for enactive games. In: Brooks, A.L., Brooks, E. (eds.) ArtsIT/DLI -2016. LNICST, vol. 196, pp. 173–180. Springer, Cham (2017). Scholar
  8. 8.
    Li, S., Pathirana, P.N., Caelli, T.: Multi-kinect skeleton fusion for physical rehabilitation monitoring. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, pp. 5060–5063 (2014)Google Scholar
  9. 9.
    Moon, S., Park, Y., Ko, D.W., Suh, I.H.: Multiple kinect sensor fusion for human skeleton tracking using Kalman filtering. Int. J. Adv. Robot. Syst. 13(2) (2016)CrossRefGoogle Scholar
  10. 10.
    Bravo, D.A., Rengifo, C.F., Agredo, W.: Comparación de dos sistemas de captura de movimiento por medio de las trayectorias articulares de marcha. Rev. Mex. Ing. Biomédica 37(2), 149–160 (2017)Google Scholar
  11. 11.
    Calderita, L.V., Bandera, J.P., Bustos, P., Skiadopoulos, A.: Model-based reinforcement of kinect depth data for human motion capture applications. Sensors (Switzerland) 13(7), 8835–8855 (2013)CrossRefGoogle Scholar
  12. 12.
    Dao, T.T., Pouletaut, P., Gamet, D., Christine Ho Ba Tho, M.: Real-time rehabilitation system of systems for monitoring the biomechanical feedbacks of the musculoskeletal system. In: Nguyen, V.-H., Le, A.-C., Huynh, V.-N. (eds.) Knowledge and Systems Engineering. AISC, vol. 326, pp. 553–565. Springer, Cham (2015). Scholar
  13. 13.
    Connork, P., Ross, P.: Biometric recognition by gait: a survey of modalities and features. Comput. Vis. Image Underst. 167, 1–27 (2018)CrossRefGoogle Scholar
  14. 14.
    Brandão, A.F., Dias, D.R.C., Castellano, G., Parizotto, N.A., Trevelin, L.C.: RehabGesture: an alternative tool for measuring human movement. Telemed. e-Health 22(7), 584–589 (2016)CrossRefGoogle Scholar
  15. 15.
    Napoli, A., Glass, S., Ward, C., Tucker, C., Obeid, I.: Performance analysis of a generalized motion capture system using microsoft kinect 2.0. Biomed. Signal Process. Control 38, 265–280 (2017)CrossRefGoogle Scholar
  16. 16.
    Pérez-Alba, K., León-Aguilar, A., Salido-Ruiz, R.: Estudio comparativo de métodos para el análisis del movimiento en 2D: ventajas y desventajas del uso de marcadores. Memorias del Congr. Nac. Ing. Biomédica 4(1), 294–297 (2017)Google Scholar
  17. 17.
    Lin, C.H., Liu, J.C., Lin, S.Y.: 3-dimension personal identification and its applications based on kinect, pp. 143–146 (2016)Google Scholar
  18. 18.
    Destelle, F., et al.: Low-cost accurate skeleton tracking based on fusion of kinect and wearable inertial sensors. In: 2014 22nd European Signal Processing Conference (EUSIPCO), Portugal, pp. 371–375 (2014)Google Scholar
  19. 19.
    Bo, A., Hayashibe, M., Poignet, P., Padilha, A.: Joint angle estimation in rehabilitation with inertial sensors and its integration with Kinect. In: Conference Proceedings IEEE Engineering in Medicine and Biology Society, Boston, pp. 3479–3483 (2011)Google Scholar
  20. 20.
    Diebel, J.: Representing attitude: euler angles, unit quaternions, and rotation vectors, Stanford (2006)Google Scholar
  21. 21.
    Glonek, G., Wojciechowski, A.: Hybrid orientation based human limbs motion tracking method, Standford, Switzerland, vol. 17, no. 12, p. 2857 (2017)CrossRefGoogle Scholar
  22. 22.
    Chen, S., Brantley, J., Kim, T., Lach, J.: Characterizing and minimizing synchronization and calibration errors in inertial body sensor networks. In: Proceedings of the Fifth International Conference on Body Area Networks - BodyNets, Corfu, Greece, p. 138 (2010)Google Scholar
  23. 23.
    Wåhslén, J., Orhan, I., Lindh, T.: Local time synchronization in bluetooth piconets for data fusion using mobile phones. In: 2011 International Conference on Body Sensor Networks, pp. 133–138. IEEE Xplore, Dallas (2011)Google Scholar
  24. 24.
    Tannous, H., Istrate, D., Benlarbi-Delai, A., Sarrazin, J.: A new multi-sensor fusion scheme to improve the accuracy of knee flexion kinematics for functional rehabilitation movements sensors, vol. 16, no. 11. MEDLINE, Switzerland (2016)CrossRefGoogle Scholar
  25. 25.
    Brosseau, L., et al.: Intra-and intertester reliability and criterion validity of the parallelogram and universal goniometers for measuring maximum active knee flexion and extension of patients with knee restrictions. Arch. Phys. Med. Rehabil. 82(3), 396–402 (2001)CrossRefGoogle Scholar
  26. 26.
    Lesmes, J.D.: Evaluación clínico-funcional del movimiento corporal humano. Ed. Médica Panamericana (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • D. Mayorca-Torres
    • 1
    • 2
    Email author
  • Julio C. Caicedo-Eraso
    • 2
  • Diego H. Peluffo-Ordoñez
    • 3
    • 4
  1. 1.Facultad de Ingeniería, Universidad de la MarianaPastoColombia
  2. 2.Facultad de IngenieríaUniversidad de CaldasManizalesColombia
  3. 3.Escuela de Ciencias Matemáticas y Computacionales Yachay TechSan Miguel de UrcuquíEcuador
  4. 4.Corporación Universitaria Autónoma de NariñoPastoColombia

Personalised recommendations