Skip to main content

Graph Model Evolution During Epileptic Seizures: Linear Model Approach

Part of the Communications in Computer and Information Science book series (CCIS,volume 1068)

Abstract

Epilepsy is a brain disorder characterized by sustained predisposition to generate epileptic seizures. According to the World Health Organization, it is one of the most common neurological disorders, affecting approximately 50 million people worldwide. A modern approach for brain study is to model it as a complex system composed of a network of oscillators in which the emergent property of synchronization arises. By this token, epileptic seizures can be understood as a process of hypersynchronization between brain areas. To assess such property, Partial Directed Coherence (PDC) method represents a suitable technique, once it allows a more precise investigation of interactions that may reveal direct influences from one brain area on another. During connectivity analysis, there may be a need to assess the statistical significance of the communication threshold and Surrogate Data, a method already applied for that purpose, can be used. Hence, the objective in this work was to carry out PDC connectivity analysis in combination with Surrogate Data to evaluate the communication threshold between brain areas and develop a graph model evolution during epileptic seizure, according to the classical EEG frequency bands. The main contribution is the threshold analysis adding statistical significance for connectivity investigation. A case study performed using EEG signals from rats showed that the applied methodology represents an appropriate alternative for functional analysis, providing insights on brain communication.

Keywords

  • Epilepsy
  • Seizures
  • Connectivity analysis
  • Partial directed coherence
  • Surrogate

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-36636-0_12
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-36636-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Feigin, V.L., et al.: The Lancet Neurology (2019)

    Google Scholar 

  2. Fisher, R.S., et al.: Epilepsia 55(4), 475 (2014). https://doi.org/10.1111/epi.12550.

    CrossRef  Google Scholar 

  3. Thijs, R.D., Surges, R., O’Brien, T.J., Sander, J.W.: The Lancet (2019)

    Google Scholar 

  4. Devinsky, O., Vezzani, A., O’Brien, T.J., Scheffer, I.E., Curtis, M., Perucca, P.: Nat. Rev. Dis. Primers 4 (2018). https://doi.org/10.1038/nrdp.2018.24. https://www.nature.com/articles/nrdp201824#supplementary-information

  5. Mele, M., Costa, R.O., Duarte, C.B.: Front. Cell. Neurosci. 13, 77 (2019). https://doi.org/10.3389/fncel.2019.00077

    CrossRef  Google Scholar 

  6. Oyarzabal, A., Marin-Valencia, I.: J. Inherit. Metab. Dis. 42(2), 220 (2019). https://doi.org/10.1002/jimd.12071

    CrossRef  Google Scholar 

  7. Andrea Avena-Koenigsberger, O.S., Msic, B.: Nat. Rev. Neurosci. 19, 17 (2017). https://doi.org/10.1038/nrn.2017.149

    CrossRef  Google Scholar 

  8. Cota, V., Drabowski, B.M.B., de Oliveira, J.C., Moraes, M.: J. Neurosci. Res. 94, 463 (2016). https://doi.org/10.1002/jnr.23741

    CrossRef  Google Scholar 

  9. Weiss, S.A., et al.: Neurobiol. Dis. 124, 183 (2019). https://doi.org/10.1016/j.nbd.2018.11.014. http://www.sciencedirect.com/science/article/pii/S096999611830682X

    CrossRef  Google Scholar 

  10. Olamat, A.E., Akan, A.: In: 2017 25th Signal Processing and Communications Applications Conference (SIU), pp. 1–4 (2017). https://doi.org/10.1109/SIU.2017.7960194

  11. Ibrahim, F., et al.: Int. J. Speech Technol. 22(1), 191 (2019). https://doi.org/10.1007/s10772-018-09565-7

    CrossRef  Google Scholar 

  12. St. Louis, E.K.M., Frey, L.C.M.: Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants. American Epilepsy Society (2016). https://www.ncbi.nlm.nih.gov/books/NBK390354/

    Google Scholar 

  13. Bartolomei, F., et al.: Epilepsia 58(7), 1131 (2017). https://doi.org/10.1111/epi.13791

    CrossRef  Google Scholar 

  14. Pester, B., Lehmann, T., Leistritz, L., Witte, H., Ligges, C.: J. Neurosci. Methods 309, 199 (2018)

    CrossRef  Google Scholar 

  15. Varotto, G., et al.: Clin. Neurophysiol. 129(11), 2372 (2018). https://doi.org/10.1016/j.clinph.2018.09.008. http://www.sciencedirect.com/science/article/pii/S138824571831229X

    CrossRef  Google Scholar 

  16. Schulz, S., Haueisen, J., Bär, K.J., Voss, A.: Physiol. Meas. 39(7), 074004 (2018). https://doi.org/10.1088/1361-6579/aace9b

    CrossRef  Google Scholar 

  17. Ciaramidaro, A., Toppi, J., Casper, C., Freitag, C., Siniatchkin, M., Astolfi, L.: Sci. Rep. 8 (2018). https://doi.org/10.1038/s41598-018-24416-w

  18. Gaxiola-Tirado, J.A., Salazar-Varas, R., Gutiérrez, D.: IEEE Trans. Cogn. Dev. Syst. 10(3), 776 (2018). https://doi.org/10.1109/TCDS.2017.2777180

    CrossRef  Google Scholar 

  19. Ning, L., Rathi, Y.: IEEE Trans. Med. Imaging 37(9), 1957 (2018). https://doi.org/10.1109/TMI.2017.2739740

    CrossRef  Google Scholar 

  20. Baccalá, L.A., Sameshima, K.: Biol. Cybern. 84(6), 463 (2001). https://doi.org/10.1007/PL00007990

    CrossRef  Google Scholar 

  21. Adkinson, J.A., et al.: IEEE Trans. Neural Syst. Rehabil. Eng. 27(1), 22 (2019). https://doi.org/10.1109/TNSRE.2018.2886211

    CrossRef  Google Scholar 

  22. Huang, D., et al.: Front. Hum. Neurosci. 10, 235 (2016). https://doi.org/10.3389/fnhum.2016.00235

    CrossRef  Google Scholar 

  23. Rodrigues, P.L.C., Baccalá, L.A.: In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5493–5496 (2016). https://doi.org/10.1109/EMBC.2016.7591970

  24. Endo, W., Santos, F.P., Simpson, D., Maciel, C.D., Newland, P.L.: J. Comput. Neurosci. 38(2), 427 (2015)

    CrossRef  Google Scholar 

  25. Santos, F.P., Maciel, C.D., Newland, P.L.: J. Comput. Neurosci. 43(2), 159 (2017)

    MathSciNet  CrossRef  Google Scholar 

  26. Faes, L., Porta, A., Nollo, G.: IEEE Trans. Biomed. Eng. 57(8), 1897 (2010). https://doi.org/10.1109/TBME.2010.2042715

    CrossRef  Google Scholar 

  27. Faes, L., Porta, A., Nollo, G.: In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology society, pp. 6280–6283. IEEE (2009)

    Google Scholar 

  28. Faes, L., Pinna, G.D., Porta, A., Maestri, R., Nollo, G.: IEEE Trans. Biomed. Eng. 51(7), 1156 (2004)

    CrossRef  Google Scholar 

  29. Chopra, R., Murthy, C.R., Rangarajan, G.: IEEE Trans. Signal Process. 66(22), 5803 (2018). https://doi.org/10.1109/TSP.2018.2872004

    MathSciNet  CrossRef  Google Scholar 

  30. Takahashi, D.Y., Baccalá, L.A., Sameshima, K.: J. Appl. Stat. 34(10), 1259 (2007). https://doi.org/10.1080/02664760701593065

    MathSciNet  CrossRef  Google Scholar 

  31. Lancaster, G., Iatsenko, D., Pidde, A., Ticcinelli, V., Stefanovska, A.: Phys. Rep. 748, 1 (2018). https://doi.org/10.1016/j.physrep.2018.06.001. http://www.sciencedirect.com/science/article/pii/S0370157318301340. Surrogate data for hypothesis testing of physical systems

    MathSciNet  CrossRef  Google Scholar 

  32. Schreiber, T., Schmitz, A.: Phys. Rev. Lett. 77, 635 (1996). https://doi.org/10.1103/PhysRevLett.77.635

    CrossRef  Google Scholar 

  33. Pereda, E., Quiroga, R.Q., Bhattacharya, J.: Prog. Neurobiol. 77(1), 1 (2005). https://doi.org/10.1016/j.pneurobio.2005.10.003. http://www.sciencedirect.com/science/article/pii/S030100820500119X

    CrossRef  Google Scholar 

  34. Subramaniyam, N.P., Hyttinen, J.: Phys. Rev. E 91, 022927 (2015). https://doi.org/10.1103/PhysRevE.91.022927

    MathSciNet  CrossRef  Google Scholar 

  35. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer, J.D.: Phys. D: Nonlinear Phenom. 58(1), 77 (1992). https://doi.org/10.1016/0167-2789(92)90102-S. http://www.sciencedirect.com/science/article/pii/016727899290102S

    CrossRef  Google Scholar 

  36. Schreiber, T., Schmitz, A.: Phys. D: Nonlinear Phenom. 142(3–4), 346 (2000)

    CrossRef  Google Scholar 

  37. Chen, Y., Bressler, S.L., Ding, M.: J. Neurosci. Methods 150(2), 228 (2006)

    CrossRef  Google Scholar 

  38. Paxinos, G., Watson, C.: The Rat Brain in Stereotaxic Coordinates, 7th edn. Elsevier (2013)

    Google Scholar 

  39. Preston, A.R., Eichenbaum, H.: Curr. Biol. 23(17), R764 (2013)

    CrossRef  Google Scholar 

  40. Eichenbaum, H.: Nat. Rev. Neurosci. 1(1), 41 (2000)

    CrossRef  Google Scholar 

  41. Uhlhaas, P.J., Singer, W.: Neuron 52(1), 155 (2006)

    CrossRef  Google Scholar 

  42. Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J.: Nat. Rev. Neurosci. 2(4), 229 (2001)

    CrossRef  Google Scholar 

  43. Bertram, E.H., Mangan, P., Fountain, N., Rempe, D., et al.: Epilepsy Res. 32(1–2), 194 (1998)

    CrossRef  Google Scholar 

  44. Schnitzler, A., Gross, J.: Nat. Rev. Neurosci. 6(4), 285 (2005)

    CrossRef  Google Scholar 

Download references

Acknowledgment

Laboratory of Neuroengineering and Neuroscience, Department of Electrical Engineering, Federal University of São João Del-Rei for partnership and EEG data used in this paper. Experimental procedures in animals were supported by the Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG) [grant number APQ 02485-15].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos D. Maciel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Santos, T.M.O., Tsukahara, V.H.B., de Oliveira, J.C., Cota, V.R., Maciel, C.D. (2019). Graph Model Evolution During Epileptic Seizures: Linear Model Approach. In: Cota, V., Barone, D., Dias, D., Damázio, L. (eds) Computational Neuroscience. LAWCN 2019. Communications in Computer and Information Science, vol 1068. Springer, Cham. https://doi.org/10.1007/978-3-030-36636-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36636-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36635-3

  • Online ISBN: 978-3-030-36636-0

  • eBook Packages: Computer ScienceComputer Science (R0)