On Physical Web for Social Networks

  • Dmitry NamiotEmail author
  • Manfred Sneps-Sneppe
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1141)


The article discusses the use of Physical Web approaches for the expansion of social networks. This implies the presentation of data from social networks in a real (physical) context, as well as the inverse task of using information about a real physical context in querying and analyzing data from social networks. First of all, mobile phones of social network users are considered as real objects that will be used both in data dissemination and in gathering information about the context. In this case, the purpose of consideration is to build a “natural” extension, when the implementation does not require the creation of a special type of social network entries. The general scheme or model of implementation is based on the minimization (or even complete absence) of requesting additional rights to access the social network, the absence of marks in the social network, and the use of basic functionality and standard protocols for mobile devices.


Physical Web Network proximity Social networks 


  1. 1.
    Sneps-Sneppe, M., Namiot, D.: On physical web models. In: 2016 International Siberian Conference on Control and Communications (SIBCON). IEEE (2016)Google Scholar
  2. 2.
    Namiot, D., Sneps-Sneppe, M.: On Bluetooth proximity models. In: Advances in Wireless and Optical Communications (RTUWO). IEEE (2016)Google Scholar
  3. 3.
    Kim, W., et al.: On target tracking with binary proximity sensors. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks. IEEE Press (2005)Google Scholar
  4. 4.
    Sabatini, A.M., et al.: A low-cost, composite sensor array combining ultrasonic and infrared proximity sensors. In: Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, vol. 3. IEEE (1995)Google Scholar
  5. 5.
    Han, M., Lee, Y.-K., Lee, S.: Comprehensive context recognizer based on multimodal sensors in a smartphone. Sensors 12(9), 12588–12605 (2012)CrossRefGoogle Scholar
  6. 6.
    Proximity Sensor Repair. Accessed Apr 2019
  7. 7.
    Namiot, D., Sneps-Sneppe, M.: Context-aware data discovery. In: 2012 16th International Conference on Intelligence in Next Generation Networks (ICIN). IEEE (2012)Google Scholar
  8. 8.
    Namiot, D., Sneps-Sneppe, M.: Geofence and network proximity. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2013. LNCS, vol. 8121, pp. 117–127. Springer, Heidelberg (2013). Scholar
  9. 9.
    Schneps-Schneppe, M., et al.: Wired smart home: energy metering, security, and emergency issues. In: 2012 IV International Congress on Ultra Modern Telecommunications and Control Systems. IEEE (2012)Google Scholar
  10. 10.
    Namiot, D., Sneps-Sneppe, M.: The physical web in smart cities. In: 2015 Advances in Wireless and Optical Communications (RTUWO). IEEE (2015)Google Scholar
  11. 11.
  12. 12.
    How EddyStone Works. Accessed Apr 2019
  13. 13.
  14. 14.
    Namiot, D.: Context-aware browsing–a practical approach. In: 2012 Sixth International Conference on Next Generation Mobile Applications, Services and Technologies. IEEE (2012)Google Scholar
  15. 15.
    Namiot, D., Sneps-Sneppe, M., Skokov, O.: Context-aware QR codes. World Appl. Sci. J. 25(4), 554–560 (2013)Google Scholar
  16. 16.
    Lyardet, F., Szeto, D.W., Aitenbichler, E.: Context-aware indoor navigation. In: Aarts, E., et al. (eds.) AmI 2008. LNCS, vol. 5355, pp. 290–307. Springer, Heidelberg (2008). Scholar
  17. 17.
    Rouillard, J.: Contextual QR codes. In: 2008 The Third International Multi-Conference on Computing in Global Information Technology (ICCGI 2008). IEEE (2008)Google Scholar
  18. 18.
    Namiot, D., Sneps-Sneppe, M.: On proximity-based information delivery. In: Vishnevskiy, V.M., Kozyrev, D.V. (eds.) DCCN 2018. CCIS, vol. 919, pp. 83–94. Springer, Cham (2018). Scholar
  19. 19.
    Liu, J., Chen, C., Ma, Y.: Modeling and performance analysis of device discovery in Bluetooth low energy networks. In: Proceedings of the IEEE on Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7 December 2012, pp. 1538–1543 (2012)Google Scholar
  20. 20.
    Liu, J., Chen, C., Ma, Y.: Modeling neighbor discovery in Bluetooth low energy networks. IEEE Commun. Lett. 16, 1439–1441 (2012)CrossRefGoogle Scholar
  21. 21.
    Namiot, D., Sneps-Sneppe, M.: Customized check-in procedures. In: Balandin, S., Koucheryavy, Y., Hu, H. (eds.) NEW2AN/ruSMART -2011. LNCS, vol. 6869, pp. 160–164. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  22. 22.
    Makarychev, I.: Using physical web as an extension for social networks. Diploma thesis, Lomonosov Moscow State University (2019)Google Scholar
  23. 23.
    Jung, J., Kang, D., Bae, C.: Distance estimation of smart device using bluetooth. In: ICSNC 2013 - The Eighth International Conference on Systems and Networks Communications, pp. 13–18 (2013) Google Scholar
  24. 24.
    Stefanidis, A., Crooks, A., Radzikowski, J.: Harvesting ambient geospatial information from social media feeds. GeoJournal 78(2), 319–338 (2013)CrossRefGoogle Scholar
  25. 25.
    Faragher, R., Harle, R.: Location fingerprinting with Bluetooth low energy beacons. IEEE J. Sel. Areas Commun. 33(11), 2418–2428 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Computational Mathematics and CyberneticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Ventspils International Radio Astronomy CentreVentspils University of Applied SciencesVentspilsLatvia

Personalised recommendations