Skip to main content

On the Robust Distributed Secondary Control of Islanded Inverter-Based Microgrids

  • Chapter
  • First Online:
Variable-Structure Systems and Sliding-Mode Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 271))

Abstract

In this chapter, some recent results of applications of sliding-mode control strategies for solving the AC microgrid secondary restoration control problem are discussed. The control problem is formulated in a distributed way in accordance with the leader–follower consensus paradigm thus avoiding centralized decision-making. The control schemes are robust in the sense that the voltage and frequency restoration of an inverter-based islanded microgrid is achieved under severe uncertainties affecting the grid and load dynamical models and parameters. In this chapter, two distributed sliding-mode-based control strategies are discussed. The first approach performs the task in finite time exploiting instantaneous communications among distributed generators, whereas the second one attains the goal with an exponential convergence rate by taking into account delayed communications among generators. Both the proposed strategies yield continuous control actions, with discontinuous time derivative, that can safely be pulse-width modulated by a fixed-frequency carrier, as required to not hurt the switching power artifacts. The performance of the proposed schemes is analyzed by means of Lyapunov tools and verified by means of numerical simulations taken in different operative scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bidram, A., Davoudi, A.: Hierarchical structure of microgrids control system. IEEE Trans. Power Syst. 3(4), 1963–1976 (2012)

    Google Scholar 

  2. Guerrero, J.M., Chandorkar, M., Lee, T.-L., Loh, P.C.: Advanced control architectures for intelligent microgrids: Decentralized and hier- archical control. IEEE Trans. Ind. Electron. 60(4), 1254–1262 (2013)

    Article  Google Scholar 

  3. Lopes, J.P., Moreira, C., Madureira, A.: Defining control strategies for microgrids islanded operation. IEEE Trans. Power Syst. 21(2), 916–924 (2006)

    Article  Google Scholar 

  4. Incremona, G.P., Cucuzzella, M., Magni, L., Ferrara, A.: MPC with sliding mode control for the energy management system of microgrids. IFAC-PapersOnLine 50(1), 7397–7402 (2017)

    Article  Google Scholar 

  5. Incremona, G.P., Cucuzzella, M., Ferrara, A.: Decentralized sliding mode control of islanded AC microgrids with arbitrary topology. IEEE Trans. Ind. Electron. 64(8), 1–8 (2017)

    Google Scholar 

  6. Incremona, G.P., Cucuzzella, M., Ferrara, A.: Adaptive suboptimal second-order sliding mode control for microgrids. Int. J. Control 89(9), 1849–1867 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dörfler, F., Simpson-Porco, J.W., Bullo, F.: Breaking the hierarchy: distributed control and economic optimality in microgrids. IEEE Trans. Control Netw. Syst. 3(3), 241–253 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Trip, S., Cucuzzella, M., Persis, C.D., Ferrara, A., Scherpen, J.M.A.: Robust load frequency control of nonlinear power networks. Int. J. Control 1–14 (2018)

    Google Scholar 

  9. Andreasson, M., Dimarogonas, D.V., Sandberg, H., Johansson, K.H.: Distributed control of networked dynamical systems: static feedback, integral action and consensus. IEEE Trans. Autom. Control 59(7), 1750–1764 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Qin, J., Ma, Q., Shi, Y., Wang, L.: Recent advances in consensus of multi-agent systems: a brief survey. IEEE Trans. Ind. Electron. 64(6), 4972–4983 (2017)

    Article  Google Scholar 

  11. Trip, S., Cucuzzella, M., Persis, C.D., Schaft, A.V.D., Ferrara, A.: Passivity-based design of sliding modes for optimal load frequency control. IEEE Trans. Control Syst. Technol. 99, 1–14 (2018)

    Google Scholar 

  12. Guo, F., Wen, C., Mao, J., Song, Y.-D.: Distributed economic dispatch for smart grids with random wind power. IEEE Trans. Smart Grid 7(3), 1572–1583 (2016)

    Article  Google Scholar 

  13. Shafiee, Q., Guerrero, J.M., Vasquez, J.C.: Distributed secondary control for islanded microgridsa novel approach. IEEE Trans. Power Electron. 29(1), 1018–1031 (2014)

    Article  Google Scholar 

  14. Simpson-Porco, J.W., Dörfler, F., Bullo, F.: Synchronization and power sharing for droop-controlled inverters in islanded microgrids. Elsevier, Autom. 49(9), 2603–2611 (2013)

    Google Scholar 

  15. Guo, F., Wen, C., Mao, J., Song, Y.-D.: Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids. IEEE Trans. Ind. Electron. 62(7), 4355–4364 (2015)

    Article  Google Scholar 

  16. Simpson-Porco, J.W., Shafiee, Q., Dörfler, F., Vasquez, J.C., Guerrero, J.M., Bullo, F.: Secondary frequency and voltage control of islanded microgrids via distributed averaging. IEEE Trans. Ind. Electron. 62(11), 7025–7038 (2015)

    Article  Google Scholar 

  17. Bidram, A., Davoudi, A., Lewis, F.L., Qu, Z.: Secondary control of microgrids based on distributed cooperative control of multi-agent systems. IET Gen., Trans. Distrib. 7(8), 822–831 (2013)

    Article  Google Scholar 

  18. Bidram, A., Davoudi, A., Lewis, F.L., Guerrero, J.M.: Distributed cooperative secondary control of microgrids using feedback linearization. IEEE Trans. Power Syst. 28(3), 3462–3470 (2013)

    Article  Google Scholar 

  19. Bidram, A., Davoudi, A., Lewis, F.L., Ge, S.S.: Distributed adaptive voltage control of inverter-based microgrids. IEEE Trans. Energy Convers 29(4), 862–872 (2014)

    Article  Google Scholar 

  20. Petrillo, A., Salvi, A., Santini, S., Valente, A.S.: Adaptive synchronization of linear multi-agent systems with time-varying multiple delays. J. Franklin Inst. 354(18), 8586–8605 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tang, F., Guerrero, J.M., Vasquez, J.C., Wu, D., Meng, L.: Distributed active synchronization strategy for microgrid seamless reconnection to the grid under unbalance and harmonic distortion. IEEE Trans. Smart Grid 6(6), 2757–2769 (2015)

    Article  Google Scholar 

  23. Simpson-Porco, J.W., Dörfler, F., Bullo, F.: Voltage stabilization in microgrids via quadratic droop control. IEEE Trans. Autom. Control 62(3), 1239–1253 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhong, Q.C.: Robust droop controller for accurate proportional load sharing among inverters operated in parallel. IEEE Trans. Ind. Electron. 60(4), 1281–1290 (2013)

    Article  Google Scholar 

  25. Schiffer, J., Seel, T., Raisch, J., Sezi, T.: Voltage stability and reactive power sharing in inverter-based microgrids with consensus- based distributed voltage control. IEEE Trans. Control Syst. Technol. 24(1), 96–109 (2016)

    Article  Google Scholar 

  26. Coelho, E.A.A., Wu, D., Guerrero, J.M., Vasquez, J.C., Dragičević, T., Stefanović, Č., Popovski, P.: Small-signal analysis of the microgrid secondary control considering a communication time delay. IEEE Trans. Ind. Electron. 63(10), 6257–6269 (2016)

    Article  Google Scholar 

  27. Pilloni, A., Pisano, A., Orlov, Y., Usai, E.: Consensus-based control for a network of diffusion PDEs with boundary local interaction. IEEE Trans. Autom. Control 61(9), 2708–2713 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pilloni, A., Franceschelli, M., Pisano, A., Usai, E.: Recent advances in sliding-mode based consensus strategies. In: Proceedings of the 13th IEEE International Workshop on Variable Structure Systems, pp. 1–6 (2014)

    Google Scholar 

  29. Mei, J., Ren, W., Ma, G.: Distributed coordinated tracking with a dynamic leader for multiple euler-lagrange systems. IEEE Trans. Autom. Control 56(6), 1415–1421 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pilloni, A., Pisano, A., Usai, E.: Robust finite-time frequency and voltage restoration of inverter-based microgrids via sliding-mode cooperative control. IEEE Trans. Ind. Electron. 65(1), 907–917 (2018)

    Article  Google Scholar 

  31. Pilloni, A., Pisano, A., Usai, E.: Voltage restoration of islanded microgrids via cooperative second-order sliding mode control. Elsevier, IFAC-PapersOnLine 50(1), 9637–9642 (2017)

    Article  Google Scholar 

  32. Bokhari, A., Alkan, A., Dogan, R., Diaz-Aguiló, M., De Leon, F., Czarkowski, D., Zabar, Z., Birenbaum, L., Noel, A., Uosef, R.E.: Experimental determination of the zip coefficients for modern residential, commercial, and industrial loads. IEEE Trans. Power Delivery 29(3), 1372–1381 (2014)

    Article  Google Scholar 

  33. Hatipoglu, K., Fidan, I., Radman, G.: Investigating effect of voltage changes on static zip load model in a microgrid environment. In: IEEE North American Power Symposium (NAPS) (2012)

    Google Scholar 

  34. Powell, L.: Power System Load Flow Analysis. McGraw-Hill, New York (2005)

    Google Scholar 

  35. Renmu, H., Ma, J., Hill, D.J.: Composite load modeling via measurement approach. IEEE Trans. Power Syst. 21(2), 663–672 (2006)

    Article  Google Scholar 

  36. Martí, J.R., Ahmadi, H., Bashualdo, L.: Linear power-flow formulation based on a voltage-dependent load model. IEEE Trans. Power Delivery 28(3), 1682–1690 (2013)

    Article  Google Scholar 

  37. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Levant, A.: Robust exact differentiation via sliding mode technique. Elsevier, Automatica 34(3), 379–384 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bartolini, G., Pisano, A., Usai, E.: First and second derivative estimation by sliding mode technique. J. Signal Process. 4(2), 167–176 (2000)

    Google Scholar 

  40. Orlov, Y.: Finite time stability and robust control synthesis of uncertain switched systems. SIAM J. Control Optim. 43(4), 1253–1271 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pilloni, A., Pisano, A., Usai, E.: Voltage restoration of islanded microgrids via cooperative second-order sliding mode control. IFAC-PapersOnLine 50(1), 9637–9642 (2017)

    Article  Google Scholar 

  42. Pilloni, A., Pisano, A., Usai, E.: Finite-time consensus for a network of perturbed double integrators by second-order sliding mode technique. In: IEEE Conference on Decision and Control, pp. 2145–2150 (2013)

    Google Scholar 

  43. Franceschelli, M., Gasparri, A., Giua, A., Seatzu, C.: Decentralized estimation of laplacian eigenvalues in multi-agent systems. Elsevier, Automatica 49(4), 1031–1036 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Cortès, J.: Finite-time convergent gradient flows with applications to network consensus. Elsevier, Automatica 42(11), 1993–2000 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  46. Xin, H., Qu, Z., Seuss, J., Maknouninejad, A.: A self-organizing strategy for power flow control of photovoltaic generators in a distribution network. IEEE Trans. Power Syst. 26(3), 1462–1473 (2011)

    Article  Google Scholar 

  47. Pilloni, A., Pisano, A., Franceschelli, M., Usai, E.: Finite-time consensus for a network of perturbed double integrators by second-order sliding mode technique. IEEE Conference on Decision and Control, pp. 2145–2150 (2012)

    Google Scholar 

  48. Lu, X., Yu, X., Lai, J., Wang, Y., Guerrero, J.M.: A novel distributed secondary coordination control approach for islanded microgrids. IEEE Trans. Smart Grid (2016). https://doi.org/10.1109/TSG.2016.2618120

    Article  Google Scholar 

  49. Gholami, M., Pilloni, A., Pisano, A., Dashti, Z.A.S., Usai, E.: Robust consensus-based secondary voltage restoration of inverter-based islanded microgrids with delayed communications. IEEE Conf. Decis. Control 811–816 (2018)

    Google Scholar 

  50. Gholami, M., Pilloni, A., Pisano, A., Usai, E.: Robust consensus-based secondary frequency and voltage restoration of inverter-based islanded microgrids with delayed communications. Control Eng. Pract., Under review on Elsevier (2019)

    Google Scholar 

  51. Chen, G., Feng, E.: Distributed secondary control and optimal power sharing in microgrids. IEEE/CAA J. Autom. Sinica 2(3), 304–312 (2015)

    Article  MathSciNet  Google Scholar 

  52. Mathworks, Documentation matlab R2017a: Three-phase fault (2017). https://it.mathworks.com/help/physmod/sps/powersys/ref/threephasefault.html

  53. Orlov, Y.: Discontinuous Systems: Lyapunov Analysis and Robust Synthesis Under Uncertainty Conditions. Springer, Berlin (2008)

    Google Scholar 

  54. Pilloni, A., Pisano, A., Usai, E., Menon, P.P., Edwards, C.: Decentralized state estimation in connected systems. Elsevier. IFAC Proc. 46(2), 421–426 (2013)

    Article  Google Scholar 

  55. Yang, J., Li, S., Yu, X.: Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans. Ind. Electron. 60(1), 160–169 (2013)

    Article  Google Scholar 

  56. Utkin, V., Lee, H.: Chattering problem in sliding mode control systems. In: IEEE International Workshop on Variable Structure Systems, pp. 346–350 (2006)

    Google Scholar 

  57. Utkin, V., Shi, J.: Integral sliding mode in systems operating under uncertainty conditions. IEEE Conf. Decis. Control 4(1), 4591–4596 (1996)

    Article  Google Scholar 

  58. Levant, A.: Sliding order and sliding accuracy in sliding mode control. Taylor & Francis. Int. J. Control 58(6), 1247–1263 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  59. Khalil, H.K.: Nonlinear Systems. Prentice Hall/Pearson Educ, New Jersey (2002)

    MATH  Google Scholar 

  60. Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. CRC Press, Boca Raton (1998)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The research leading to these results has been partially supported by P.O.R. SARDEGNA F.S.E. 2014-2020 - Asse III “Istruzione e Formazione, Obiettivo Tematico: 10, Obiettivo Specifico: 10.5, Azione dell’accordo fi Partenariato:10.5.12 “Avviso di chiamata per il finanziamento di Progetti di ricerca - Anno 2017” and, by Fondazione di Sardegna under project ODIS - Optimization of DIstributed systems in the Smart-city and smart-grid settings, CUP:F72F16003170002, and by the Sardinian Regional Government, call “Cluster top-down actions (POR FESR)”, project “Virtual Energy”, and by project RASSR05871 MOSIMA, FSC 2014-2020, Annualita’ 2017, Area Tematica 3, Linea d’Azione 3.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Pilloni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pilloni, A., Gholami, M., Pisano, A., Usai, E. (2020). On the Robust Distributed Secondary Control of Islanded Inverter-Based Microgrids. In: Steinberger, M., Horn, M., Fridman, L. (eds) Variable-Structure Systems and Sliding-Mode Control. Studies in Systems, Decision and Control, vol 271. Springer, Cham. https://doi.org/10.1007/978-3-030-36621-6_11

Download citation

Publish with us

Policies and ethics