Skip to main content

Polyphenols and Flavonoids from Honey: A Special Focus on Diabetes

Abstract

Honey is a matrix of vegetal origin processed by various types of bees. Besides physical properties honey constitutes of several minor chemical constituents such as polyphenols and flavonoids. Phenolic compounds or polyphenols are basically products of the secondary metabolism of plants and so a major group of compounds occurring in honey. The colour intensity of honey defines the percentage of polyphenols present in it. The polyphenols are classified into different types of groups due to the presence of a number of phenol rings and their binding capacity to the structural elements. Phenolic acids and flavonoids are the main classes of the polyphenols. Flavonoids may be categorized into several types including flavonols, flavanones, flavones, anthocyanidins and isoflavones due to their dietary significance. The phenolic compounds show a great extent of biological activities such as antioxidant, antimicrobial, anti-diabetic, anticancer and so on. Honey is one of the natural products which helps in decreasing oxidative stress by cleaning up the oxygen free radicals and also decreases blood sugar level. The rise in reactive oxygen species production depends on various factors. One of the factors is the glucose absorption by muscle cells and adipose tissue which contributes to oxidative stress and, thereby, rise in glycogen synthesis and glucose uptake by cells. Insulin resistance is also one of the important aspects that occur through oxidative stress by disturbing the insulin pathway. The honey found to have the mechanistic properties that ameliorate the damages occurred in diabetic condition and thereby provide benefits to the human beings. This chapter clearly sheds light on the action of polyphenols and flavonoids of honey for the human wellness especially on diabetes.

Keywords

  • Honey
  • Polyphenols
  • Flavonoids
  • Anti-diabetic
  • Cancer
  • Biological activity

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-36610-0_1
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-36610-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ahmed S, Othman NH (2013) Review of the medicinal effects of tualang honey and a comparison with manuka honey. Malaysian J Med Sci MJMS 20(3):6

    Google Scholar 

  • Akalın H, Bayram M, Anlı RE (2017) Determination of some individual phenolic compounds and antioxidant capacity of mead produced from different types of honey. J Inst Brew 123(1):167–174

    CrossRef  CAS  Google Scholar 

  • Alam MA, Subhan N, Hossain H, Hossain M, Reza HM, Rahman MM, Ullah MO (2016) Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutr Metab 13(1):27

    CrossRef  CAS  Google Scholar 

  • Al-Numair KS, Chandramohan G, Veeramani C, Alsaif MA (2015) Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats. Redox Rep 20(5):198–209

    CrossRef  CAS  PubMed  Google Scholar 

  • Alvarez-Suarez JM, Giampieri F, Battino M (2013) Honey as a source of dietary antioxidants: structures, bioavailability and evidence of protective effects against human chronic diseases. Curr Med Chem 20(5):621–638

    CrossRef  CAS  PubMed  Google Scholar 

  • Al-Waili N (2003) Intrapulmonary administration of natural honey solution, hyperosmolar dextrose or hypoosmolar distill water to normal individuals and to patients with type-2 diabetes mellitus or hypertension: their effects on blood glucose level, plasma insulin and C-peptide, blood pressure and peaked expiratory flow rate. Eur J Med Res 8(7):295–303

    CAS  PubMed  Google Scholar 

  • Amic D, Davidovic-Amic D, Beslo D, Rastija V, Lucic B, Trinajstic N (2007) SAR and QSAR of the antioxidant activity of flavonoids. Curr Med Chem 14(7):827–845

    CrossRef  CAS  PubMed  Google Scholar 

  • An G, Gallegos J, Morris ME (2011) The bioflavonoid kaempferol is an Abcg2 substrate and inhibits Abcg2- mediated quercetin efflux. Drug Metab Dispos 39(3):426–432

    CrossRef  CAS  PubMed  Google Scholar 

  • Arráez-Román D, Gómez-Caravaca AM, Gómez-Romero M, Segura-Carretero A, Fernández-Gutiérrez A (2006) Identification of phenolic compounds in rosemary honey using solid-phase extraction by capillary electrophoresis– electrospray ionization-mass spectrometry. J Pharm Biomed Anal 41(5):1648–1656

    CrossRef  CAS  PubMed  Google Scholar 

  • Aziz MSA, Giribabu N, Rao PV, Salleh N (2017) Pancreatoprotective effects of Geniotrigona thoracica stingless bee honey in streptozotocin-nicotinamide-induced male diabetic rats. Biomed Pharmacother 89:135–145

    CrossRef  CAS  PubMed  Google Scholar 

  • Bach-Faig A, Berry EM, Lairon D, Reguant J, Trichopoulou A, Dernini S, Medina FX, Battino M, Belahsen R, Miranda G, Serra-Majem L (2011) Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr 14(12A):2274–2284

    CrossRef  PubMed  Google Scholar 

  • Batumalaie K, Zaman Safi S, Mohd Yusof K, Shah Ismail I, Devi Sekaran S, Qvist R (2013) Effect of gelam honey on the oxidative stress-induced signaling pathways in pancreatic hamster cells. Int J Endocrinol 2013

    Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78(2):547–581

    CrossRef  CAS  PubMed  Google Scholar 

  • Bilkisu MM, Tukur MA, Sheriff M, Sera S, Falmata AS (2011) The effect of oral administration of honey and glucophage alone or their combination on the serum biochemical parameters of induced diabetic rats. Res Pharm Biotechnol 3(9):118–122

    Google Scholar 

  • Bogdanov S (1997) Nature and origin of the antibacterial substances in honey. LWT-Food Sci Technol 30(7):748–753

    CrossRef  CAS  Google Scholar 

  • Bogdanov S, Jurendic T, Sieber R, Gallmann P (2008) Honey for nutrition and health: a review. J Am Coll Nutr 27(6):677–689

    CrossRef  CAS  PubMed  Google Scholar 

  • Bors W, Heller W, Michel C, Saran M (1990) [36] Flavonoids as antioxidants: determination of radical- scavenging efficiencies. In: Methods in enzymology, vol 186. Academic, New York, pp 343–355

    Google Scholar 

  • Campillo N, Viñas P, Férez-Melgarejo G, Hernández-Córdoba M (2015) Dispersive liquid–liquid microextraction for the determination of flavonoid aglycone compounds in honey using liquid chromatography with diode array detection and time-of-flight mass spectrometry. Talanta 131:185–191

    CrossRef  CAS  PubMed  Google Scholar 

  • Campone L, Piccinelli AL, Pagano I, Carabetta S, Di Sanzo R, Russo M, Rastrelli L (2014) Determination of phenolic compounds in honey using dispersive liquid–liquid microextraction. J Chromatogr A 1334:9–15

    CrossRef  CAS  PubMed  Google Scholar 

  • Chan CW, Deadman BJ, Manley-Harris M, Wilkins AL, Alber DG, Harry E (2013) Analysis of the flavonoid component of bioactive New Zealand mānuka (Leptospermum scoparium) honey and the isolation, characterisation and synthesis of an unusual pyrrole. Food Chem 141(3):1772–1781

    CrossRef  CAS  PubMed  Google Scholar 

  • Chu YF, Sun JIE, Wu X, Liu RH (2002) Antioxidant and antiproliferative activities of common vegetables. J Agric Food Chem 50(23):6910–6916

    CrossRef  CAS  PubMed  Google Scholar 

  • Cianciosi D, Forbes-Hernández TY, Afrin S, Gasparrini M, Reboredo-Rodriguez P, Manna PP et al (2018) Phenolic compounds in honey and their associated health benefits: a review. Molecules 23(9):2322

    CrossRef  CAS  PubMed Central  Google Scholar 

  • Ciulu M, Solinas S, Floris I, Panzanelli A, Pilo MI, Piu PC et al (2011) RP-HPLC determination of water- soluble vitamins in honey. Talanta 83(3):924–929

    CrossRef  CAS  PubMed  Google Scholar 

  • Coskun O, Kanter M, Korkmaz A, Oter S (2005) Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol Res 51(2):117–123

    CrossRef  CAS  PubMed  Google Scholar 

  • Day AJ, DuPont MS, Ridley S, Rhodes M, Rhodes MJ, Morgan MR, Williamson G (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity. FEBS Lett 436(1):71–75

    CrossRef  CAS  PubMed  Google Scholar 

  • Day AJ, Cañada FJ, Dı́az JC, Kroon PA, Mclauchlan R, Faulds CB, Plumb GW, Morgan MRA, Williamson G (2000) Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett 468(2–3):166–170

    CrossRef  CAS  PubMed  Google Scholar 

  • Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013) Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18(14):1818–1892

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    CrossRef  CAS  PubMed  Google Scholar 

  • Erejuwa OO, Sulaiman SA, Ab Wahab MS, Sirajudeen KNS, Salzihan MS (2009) Effects of Malaysian tualang honey supplementation on glycemia, free radical scavenging enzymes and markers of oxidative stress in kidneys of normal and streptozotocin-induced diabetic rats. Int J Cardiol 137:S45

    Google Scholar 

  • Erejuwa OO, Sulaiman SA, Wahab MSA, Sirajudeen KNS, Salleh MSM, Gurtu S (2010a) Antioxidant protective effect of glibenclamide and metformin in combination with honey in pancreas of streptozotocin-induced diabetic rats. Int J Mol Sci 11(5):2056–2066

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Erejuwa OO, Sulaiman SA, Wahab MS, Sirajudeen KNS, Salleh MM, Gurtu S (2010b) Antioxidant protection of Malaysian tualang honey in pancreas of normal and streptozotocin-induced diabetic rats. Annales d’endocrinologie 71(4):291–296. Elsevier Masson

    CrossRef  CAS  PubMed  Google Scholar 

  • Erejuwa OO, Sulaiman SA, Wahab MS, Salam SKN, Salleh MSM, Gurtu S (2011) Effect of glibenclamide alone versus glibenclamide and honey on oxidative stress in pancreas of streptozotocin-induced diabetic rats. Int J Appl Res Nat Prod 4(2):1–10

    CAS  Google Scholar 

  • Erejuwa OO, Sulaiman SA, Wahab MSA (2012) Fructose might contribute to the hypoglycemic effect of honey. Molecules 17(2):1900–1915

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Erejuwa OO, Sulaiman SA, Wahab MSA (2014) Modulation of gut microbiota in the management of metabolic disorders: the prospects and challenges. Int J Mol Sci 15(3):4158–4188

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Erejuwa O, Nwobodo N, Akpan J, Okorie U, Ezeonu C, Ezeokpo B et al (2016) Nigerian honey ameliorates hyperglycemia and dyslipidemia in alloxan-induced diabetic rats. Nutrients 8(3):95

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Feás X, Pires J, Estevinho ML, Iglesias A, De Araujo JPP (2010) Palynological and physicochemical data characterisation of honeys produced in the Entre-Douro e Minho region of Portugal. Int J Food Sci Technol 45(6):1255–1262

    CrossRef  CAS  Google Scholar 

  • Ferreres F, Tomás-Barberán FA, Soler C, García-Viguera C, Ortiz A, Tomás-Lorente F (1994) A simple extractive technique for honey flavonoid HPLC analysis. Apidologie 25(1):21–30

    CrossRef  CAS  Google Scholar 

  • Folli F, Corradi D, Fanti P, Davalli A, Paez A, Giaccari A et al (2011) The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro-and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Curr Diabetes Rev 7(5):313–324

    CrossRef  CAS  PubMed  Google Scholar 

  • Gee JM, DuPont MS, Day AJ, Plumb GW, Williamson G, Johnson IT (2000) Intestinal transport of quercetin glycosides in rats involves both deglycosylation and interaction with the hexose transport pathway. J Nutr 130(11):2765–2771

    CrossRef  CAS  PubMed  Google Scholar 

  • Ghosh S, Basak P, Dutta S, Chowdhury S, Sil PC (2017) New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem Toxicol 103:41–55

    CrossRef  CAS  PubMed  Google Scholar 

  • Grankvist K, Marklund SL, Täljedal IB (1981) CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J 199(2):393–398

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamdy AA, Ismail HM, Al-Ahwal AM, Gomaa NF (2009) Determination of flavonoid and phenolic acid contents of clover, cotton and citrus floral honeys. J Egypt Public Health Assoc 84(3–4):245–259

    PubMed  Google Scholar 

  • Hii CST, Howell SL (1985) Effects of flavonoids on insulin secretion and 45Ca2+ handling in rat islets of Langerhans. J Endocrinol 107(1):1–8

    CrossRef  CAS  PubMed  Google Scholar 

  • Hillage HL (2010) The emerging risk factors collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies (vol 375, pp 2215, 2010). Lancet 376(9745):958–958

    CrossRef  Google Scholar 

  • https://www.escardio.org/Sub-specialty-communities/European-Association-of-Preventive-Cardiology-(EAPC)/News/global-statistics-on-diabetes

  • Jaganathan SK, Mandal M (2009) Honey constituents and their apoptotic effect in colon cancer cells. J Apiprod Apimed Sci 1(2):29–36

    CrossRef  Google Scholar 

  • Jones HF, Butler RN, Brooks DA (2010) Intestinal fructose transport and malabsorption in humans. Am J Physiol Gastrointest Liver Physiol 300(2):G202–G206

    CrossRef  CAS  PubMed  Google Scholar 

  • Jorge AP, Horst H, de Sousa E, Pizzolatti MG, Silva FRMB (2004) Insulinomimetic effects of kaempferitrin on glycaemia and on 14C-glucose uptake in rat soleus muscle. Chem Biol Interact 149(2–3):89–96

    CrossRef  CAS  PubMed  Google Scholar 

  • Kappel VD, Cazarolli LH, Pereira DF, Postal BG, Zamoner A, Reginatto FH, Silva FRMB (2013) Involvement of GLUT-4 in the stimulatory effect of rutin on glucose uptake in rat soleus muscle. J Pharm Pharmacol 65(8):1179–1186

    CrossRef  CAS  PubMed  Google Scholar 

  • Kečkeš J, Trifković J, Andrić F, Jovetić M, Tešić Ž, Milojković-Opsenica D (2013) Amino acids profile of Serbian unifloral honeys. J Sci Food Agric 93(13):3368–3376

    CrossRef  CAS  PubMed  Google Scholar 

  • Kellett GL, Brot-Laroche E, Mace OJ, Leturque A (2008) Sugar absorption in the intestine: the role of GLUT2. Annu Rev Nutr 28:35–54

    CrossRef  CAS  PubMed  Google Scholar 

  • Kim EK, Kwon KB, Song MY, Han MJ, Lee JH, Lee YR et al (2007) Flavonoids protect against cytokine-induced pancreatic β-cell damage through suppression of nuclear factor κB activation. Pancreas 35(4):e1–e9

    CrossRef  PubMed  Google Scholar 

  • Kimmich GA, Randles J (1978) Phloretin-like action of bioflavonoids on sugar accumulation capability of isolated intestinal cells. Membr Biochem 1(3–4):221–237

    CrossRef  CAS  PubMed  Google Scholar 

  • Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN (2009) Hyperglycemic crises in adult patients with diabetes. Diabetes Care 32(7):1335–1343

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuś PM, Szweda P, Jerković I, Tuberoso CIG (2016) Activity of polish unifloral honeys against pathogenic bacteria and its correlation with colour, phenolic content, antioxidant capacity and other parameters. Lett Appl Microbiol 62(3):269–276

    CrossRef  CAS  PubMed  Google Scholar 

  • Kwakman PH, Zaat SA (2012) Antibacterial components of honey. IUBMB Life 64(1):48–55

    CrossRef  CAS  PubMed  Google Scholar 

  • Kwon S, Kim YJ, Kim MK (2008) Effect of fructose or sucrose feeding with different levels on oral glucose tolerance test in normal and type 2 diabetic rats. Nutr Res Pract 2(4):252–258

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau YS, Tian XY, Huang Y, Murugan D, Achike FI, Mustafa MR (2013) Boldine protects endothelial function in hyperglycemia-induced oxidative stress through an antioxidant mechanism. Biochem Pharmacol 85(3):367–375

    CrossRef  CAS  PubMed  Google Scholar 

  • Lee YS, Lee S, Lee HS, Kim BK, Ohuchi K, Shin KH (2005) Inhibitory effects of isorhamnetin-3-O-β-D- glucoside from Salicornia herbacea on rat lens aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues. Biol Pharm Bull 28(5):916–918

    CrossRef  CAS  PubMed  Google Scholar 

  • Meng S, Cao J, Feng Q, Peng J, Hu Y (2013) Roles of chlorogenic acid on regulating glucose and lipids metabolism: a review. Evid Based Complement Alternat Med 2013

    Google Scholar 

  • Miyamoto KI, Hase K, Takagi T, Fujii T, Taketani Y, Minami H et al (1993) Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars. Biochem J 295(1):211–215

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Moniruzzaman M, Yung An C, Rao PV, Hawlader MNI, Azlan SABM, Sulaiman SA, Gan SH (2014) Identification of phenolic acids and flavonoids in monofloral honey from Bangladesh by high performance liquid chromatography: determination of antioxidant capacity. BioMed Res Int 2014

    Google Scholar 

  • Moran TH, McHugh PR (1981) Distinctions among three sugars in their effects on gastric emptying and satiety. Am J Phys Regul Integr Comp Phys 241(1):R25–R30

    CAS  Google Scholar 

  • Nayeem N, Asdaq SMB, Salem H, Ahel-Alfqy S (2016) Gallic acid: a promising lead molecule for drug development. J Appl Pharm 8(2):1–4

    CrossRef  CAS  Google Scholar 

  • Niture NT, Ansari AA, Naik SR (2014) Anti-hyperglycemic activity of rutin in streptozotocin-induced diabetic rats: an effect mediated through cytokines, antioxidants and lipid biomarkers. Indian J Exp Biol 52(7):720–727

    PubMed  Google Scholar 

  • Oboh G, Agunloye OM, Adefegha SA, Akinyemi AJ, Ademiluyi AO (2015) Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study. J Basic Clin Physiol Pharmacol 26(2):165–170

    CrossRef  CAS  PubMed  Google Scholar 

  • Omotayo EO, Gurtu S, Sulaiman SA, Wahab MSA, Sirajudeen KNS, Salleh MSM (2010) Hypoglycemic and antioxidant effects of honey supplementation in streptozotocin-induced diabetic rats. Int J Vitam Nutr Res 80(1):74

    CrossRef  CAS  PubMed  Google Scholar 

  • Ong KC, Khoo HE (1996) Insulinomimetic effects of myricetin on lipogenesis and glucose transport in rat adipocytes but not glucose transporter translocation. Biochem Pharmacol 51(4):423–429

    CrossRef  CAS  PubMed  Google Scholar 

  • Padayachee A, Netzel G, Netzel M, Day L, Zabaras D, Mikkelsen D, Gidley MJ (2012) Binding of polyphenols to plant cell wall analogues–part 2: phenolic acids. Food Chem 135(4):2287–2292

    CrossRef  CAS  PubMed  Google Scholar 

  • Palsamy P, Subramanian S (2010) Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stress, and pancreatic β-cell dysfunction in streptozotocin-nicotinamide-induced diabetic rats. J Cell Physiol 224(2):423–432

    CrossRef  CAS  PubMed  Google Scholar 

  • Pei K, Ou J, Huang J, Ou S (2016) P-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J Sci Food Agric 96(9):2952–2962

    CrossRef  CAS  PubMed  Google Scholar 

  • Petretto GL, Cossu M, Alamanni MC (2015) Phenolic content, antioxidant and physico-chemical properties of Sardinian monofloral honeys. Int J Food Sci Technol 50(2):482–491

    CrossRef  CAS  Google Scholar 

  • Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53(10):4290–4302

    CrossRef  CAS  PubMed  Google Scholar 

  • Ranneh Y, Ali F, Zarei M, Akim AM, Hamid HA, Khazaai H (2018) Malaysian stingless bee and Tualang honeys: a comparative characterization of total antioxidant capacity and phenolic profile using liquid chromatography- mass spectrometry. LWT 89:1–9

    CrossRef  CAS  Google Scholar 

  • Rao PV, Krishnan KT, Salleh N, Gan SH (2016) Biological and therapeutic effects of honey produced by honey bees and stingless bees: a comparative review. Rev Bras 26(5):657–664

    CAS  Google Scholar 

  • Riby JE, Fujisawa T, Kretchmer N (1993) Fructose absorption. Am J Clin Nutr 58(5):748S–753S

    CrossRef  CAS  PubMed  Google Scholar 

  • Saba ZH, Suzana M, My YA (2013) Honey: food or medicine. Med Health 8(1):3–18

    Google Scholar 

  • Sabatier S, Amiot MJ, Tacchini M, Aubert S (1992) Identification of flavonoids in sunflower honey. J Food Sci 57(3):773–774

    CrossRef  CAS  Google Scholar 

  • Sandoval-Acuna C, Ferreira J, Speisky H (2014) Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch Biochem Biophys 559:75–90

    CrossRef  CAS  PubMed  Google Scholar 

  • Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130(8):2073S–2085S

    CrossRef  CAS  PubMed  Google Scholar 

  • Schramm DD, Karim M, Schrader HR, Holt RR, Cardetti M, Keen CL (2003) Honey with high levels of antioxidants can provide protection to healthy human subjects. J Agric Food Chem 51(6):1732–1735

    CrossRef  CAS  PubMed  Google Scholar 

  • Serrano J, Cassanye A, Martín-Gari M, Granado-Serrano A, Portero-Otín M (2016) Effect of dietary bioactive compounds on mitochondrial and metabolic flexibility. Diseases 4(1):14

    CrossRef  CAS  PubMed Central  Google Scholar 

  • Sharma CP, Kaushal GP, Sareen VK, Singh S, Bhatia IS (1981) The in vitro metabolism of flavonoids by whole rumen contents and its fractions. Zentralbl Veterinarmed A 28(1):27–34

    CrossRef  CAS  PubMed  Google Scholar 

  • Solayman M, Islam MA, Paul S, Ali Y, Khalil MI, Alam N, Gan SH (2016) Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: a comprehensive review. Compr Rev Food Sci Food Saf 15(1):219–233

    CrossRef  CAS  PubMed  Google Scholar 

  • Song XY, Yao YF, Yang WD (2012) Pollen analysis of natural honeys from the central region of Shanxi, North China. PLoS One 7(11):e49545

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer JP, Chowrimootoo G, Choudhury R, Debnam ES, Srai SK, Rice-Evans C (1999) The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett 458(2):224–230

    CrossRef  CAS  PubMed  Google Scholar 

  • Sugihara N, Arakawa T, Ohnishi M, Furuno K (1999) Anti-and pro-oxidative effects of flavonoids on metal- induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with α-linolenic acid. Free Radic Biol Med 27(11–12):1313–1323

    CrossRef  CAS  PubMed  Google Scholar 

  • Tedong L, Madiraju P, Martineau LC, Vallerand D, Arnason JT, Desire DD, Lavoie L, Kamtchouing P, Haddad PS (2010) Hydro- ethanolic extract of cashew tree (Anacardium occidentale) nut and its principal compound, anacardic acid, stimulate glucose uptake in C2C12 muscle cells. Mol Nutr Food Res 54(12):1753–1762

    CrossRef  CAS  PubMed  Google Scholar 

  • Tsuji PA, Stephenson KK, Wade KL, Liu H, Fahey JW (2013) Structure-activity analysis of flavonoids: direct and indirect antioxidant, and antiinflammatory potencies and toxicities. Nutr Cancer 65(7):1014–1025

    CrossRef  CAS  PubMed  Google Scholar 

  • Tzeng TF, Liou SS, Liu IM (2011) Myricetin ameliorates defective post-receptor insulin signaling via β- endorphin signaling in the skeletal muscles of fructose-fed rats. Evid Based Complement Alternat Med 2011

    Google Scholar 

  • Uldry M, Thorens B (2004) The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch 447(5):480–489

    CrossRef  CAS  PubMed  Google Scholar 

  • Vaisman N, Niv E, Izkhakov Y (2006) Catalytic amounts of fructose may improve glucose tolerance in subjects with uncontrolled non-insulin-dependent diabetes. Clin Nutr 25(4):617–621

    CrossRef  CAS  PubMed  Google Scholar 

  • Van Schaftingen E, Davies DR (1991) Fructose administration stimulates glucose phosphorylation in the livers of anesthetized rats. FASEB J 5(3):326–330

    CrossRef  PubMed  Google Scholar 

  • Vessal M, Hemmati M, Vasei M (2003) Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp Biochem Physiol Part C Toxicol Pharmacol 135(3):357–364

    CrossRef  CAS  Google Scholar 

  • Vincent EE, Elder DJ, Curwen J, Kilgour E, Hers I, Tavaré JM (2013) Targeting non-small cell lung cancer cells by dual inhibition of the insulin receptor and the insulin-like growth factor-1 receptor. PLoS One 8(6):e66963

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Cao G, Prior RL (1996) Total antioxidant capacity of fruits. J Agric Food Chem 44(3):701–705

    CrossRef  CAS  Google Scholar 

  • White, J. W. (1980). Honey composition and properties, Beekeeping in the United States Agriculture Handbook Number 335

    Google Scholar 

  • White JW, Doner LW (1980) Honey composition and properties. Beekeep US Agric 335:82–91

    Google Scholar 

  • Wright EM, Hirayama BA, Loo DF (2007) Active sugar transport in health and disease. J Intern Med 261(1):32–43

    CrossRef  CAS  PubMed  Google Scholar 

  • Xu M, Hu J, Zhao W, Gao X, Jiang C, Liu K, Liu B, Huang F (2014) Quercetin differently regulates insulin-mediated glucose transporter 4 translocation under basal and inflammatory conditions in adipocytes. Mol Nutr Food Res 58(5):931–941

    CrossRef  CAS  PubMed  Google Scholar 

  • Yaghoobi, N., Al-Waili, N., Ghayour-Mobarhan, M., Parizadeh, S. M. R., Abasalti, Z., Yaghoobi, Z., . & Saloom, K. Y. (2008). Natural honey and cardiovascular risk factors; effects on blood glucose, cholesterol, triacylglycerole, CRP, and body weight compared with sucrose. Sci World J, 8, 463–469

    CrossRef  CAS  Google Scholar 

  • Youn JH, Kaslow HR, Bergman RN (1987) Fructose effect to suppress hepatic glycogen degradation. J Biol Chem 262(24):11470–11477

    CAS  PubMed  Google Scholar 

  • Zhang Y, Liu D (2011) Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur J Pharmacol 670(1):325–332

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhang Z, Ding Y, Dai X, Wang J, Li Y (2011) Epigallocatechin-3-gallate protects pro-inflammatory cytokine induced injuries in insulin-producing cells through the mitochondrial pathway. Eur J Pharmacol 670(1):311–316

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Visweswara Rao Pasupuleti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Pasupuleti, V.R., Arigela, C.S. (2020). Polyphenols and Flavonoids from Honey: A Special Focus on Diabetes. In: Kumar, D., Shahid, M. (eds) Natural Materials and Products from Insects: Chemistry and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36610-0_1

Download citation