Skip to main content

IoT Data Validation Using Spatial and Temporal Correlations

  • Conference paper
  • First Online:
Metadata and Semantic Research (MTSR 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1057))

Included in the following conference series:

Abstract

The Internet of Things (IoT) is the extension of Internet connectivity to physical devices and everyday objects. These devices composed by sensors, software and network connectivity can acquire, store and exchange data among them over the Internet. One of the main tasks of an IoT system consists in the continuous exchange of data and information of various kinds. The correctness of the value produced by the sensor is a crucial factor for the operation and reliability of the entire IoT system. This paper presents a centralized data validation algorithm which attempts to use spatial and temporal correlations to compensate for error on the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fawzy, A., Mokhtar, H.M., Hegazy, O.: Outliers detection and classification in wireless sensor networks. Egypt. Inform. J. 14(2), 157–164 (2013)

    Article  Google Scholar 

  2. Branisavljević, N., Kapelan, Z., Prodanović, D.: Improved real-time data anomaly detection using context classification. J. Hydroinformatics 13, 307–323 (2011)

    Article  Google Scholar 

  3. Brownlee, J.: A tour of machine learning algorithms. Mach. Learn. Mastery 1542, 33–36 (2013)

    Google Scholar 

  4. Sun, S., Bertrand-Krajewski, J.L.: On calibration data selection: the case of stormwater quality regression models. Environ. Model Softw. 35, 61–73 (2012)

    Article  Google Scholar 

  5. Mourad, M., Bertrand-Krajewski, J.L.: A method for automatic validation of long time series of data in urban hydrology. Water Sci. Technol. 45, 263–270 (2002)

    Article  Google Scholar 

  6. Qin, S.J., Li, W.: Detection, identification, and reconstruction of faulty sensors with maximized sensitivity. AIChE J. 45, 1963–1976 (1999)

    Article  Google Scholar 

  7. Olsson, G., Nielsen, M., Yuan, Z., Lynggaard-Jensen, A., Steyer, J.-P.: Instrumentation, control and automation in wastewater systems. Water Intell. Online 4, 9781780402680 (2015)

    Article  Google Scholar 

  8. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 37, 233–243 (1991)

    Article  Google Scholar 

  9. Staroswiecki, M.: Intelligent sensors: a functional view. IEEE Trans. Ind. Inform. 1, 238–249 (2005)

    Article  Google Scholar 

  10. Ibargiengoytia, P.H., Sucar, L.E., Vadera, S.: Real time intelligent sensor validation. IEEE Trans. Power Syst. 16, 770–775 (2001)

    Article  Google Scholar 

  11. Srivastava, S., Singh, M., Gupta, S.: Wireless sensor network: a survey. In: 2018 International Conference on Automation and Computational Engineering, ICACE 2018, pp. 159–163. Institute of Electrical and Electronics Engineers Inc. (2019). https://doi.org/10.1109/icace.2018.8687059

  12. Ruiz-Garcia, L., Lunadei, L., Barreiro, P., Robla, J.I.: A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends. Sensors (Switzerland) 9, 4728–4750 (2009)

    Article  Google Scholar 

  13. Zonta, D., et al.: Wireless sensor networks for permanent health monitoring of historic buildings. Smart Struct. Syst. 6, 595–618 (2010)

    Article  Google Scholar 

  14. Durisic, M.P., Tafa, Z., Dimic, G., Milutinovic, V.: A survey of military applications of wireless sensor networks. In: Mediterranean Conference on Embedded Computing (MECO), pp. 196–199 (2012)

    Google Scholar 

  15. Ko, J., et al.: Wireless sensor networks for healthcare. Proc. IEEE 98, 1947–1960 (2010)

    Article  Google Scholar 

  16. Pan, L., Li, J.: K-nearest neighbor based missing data estimation algorithm in wireless sensor networks. Wirel. Sens. Netw. 02, 115–122 (2010)

    Article  Google Scholar 

  17. Wilks, D.S.: Cluster analysis. Int. Geophys. 100, 603–616 (2011)

    Article  Google Scholar 

  18. Madden, S.: Intel Lab Data (2004). http://db.csail.mit.edu/labdata/labdata.html

  19. Mollanoori, M., Hormati, M.M., Charkari, N.M.: An online prediction framework for sensor networks. In: 16th Iranian Conference on Electrical Engineering (2008)

    Google Scholar 

  20. Sartori, F., Melen, R.: An infrastructure for wearable environments acquisition and representation. In: Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 371–372. ACM (2019)

    Google Scholar 

  21. Can, A., Guillaume, G., Picaut, J.: Cross-calibration of participatory sensor networks for environmental noise mapping. Appl. Acoust. 110, 99–109 (2016)

    Article  Google Scholar 

  22. Tran, B.H., Bouju, A., Plumejeaud-Perreau, C., Bretagnolle, V.: Towards a semantic framework for exploiting heterogeneous environmental data. Int. J. Metadata Semant. Ontol. 11(3), 191–205 (2016)

    Article  Google Scholar 

  23. Andrade, A.T.C., Montez, C., Moraes, R., Pinto, A.R., Vasques, F., da Silva, G.L.: Outlier detection using k-means clustering and lightweight methods for wireless sensor networks. In: IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 4683–4688. IEEE (2016)

    Google Scholar 

  24. Wang, Z.M., Song, G.H., Gao, C.: An isolation-based distributed outlier detection framework using nearest neighbor ensembles for wireless sensor networks. IEEE Access 7, 96319–96333 (2019)

    Article  Google Scholar 

  25. Melen, R., Sartori, F., Grazioli, L.: Modeling and understanding time-evolving scenarios. In: Proceedings of the 19th World Multiconference on Systemics, Cybernetics and Informatics (WMSCI 2015), vol. I, pp. 267–271 (2015)

    Google Scholar 

  26. Sartori, F., Melen, R.: Wearable expert system development: definitions, models and challenges for the future. Program 51(3), 235–258 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Sartori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sartori, F., Melen, R., Giudici, F. (2019). IoT Data Validation Using Spatial and Temporal Correlations. In: Garoufallou, E., Fallucchi, F., William De Luca, E. (eds) Metadata and Semantic Research. MTSR 2019. Communications in Computer and Information Science, vol 1057. Springer, Cham. https://doi.org/10.1007/978-3-030-36599-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36599-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36598-1

  • Online ISBN: 978-3-030-36599-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics