Skip to main content

SAT-Based Cryptanalysis: From Parallel Computing to Volunteer Computing

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1129))

Included in the following conference series:

  • 871 Accesses

Abstract

Volunteer computing is a powerful tool for solving hard problems by the divide-and-conquer approach. During the last decade, several hard cryptanalysis problems were solved in the volunteer computing project SAT@home. In this study, the preliminary stage of these experiments are described: how SAT-based cryptanalysis problems are chosen; how these problems are studied on a computing cluster using state-of-the-art multithreaded SAT solvers; how decompositions of the chosen SAT problems are constructed using a Monte Carlo method; how server and client software are prepared for the corresponding experiments in SAT@home. These issues are described in application to several stream ciphers, for which it is planned to launch experiments in SAT@home.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foster, I.: Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering. Addison-Wesley Longman Publishing Co. Inc., Boston (1995)

    MATH  Google Scholar 

  2. Hwang, K.: Advanced Computer Architecture: Parallelism, Scalability, Programmability, 1st edn. McGraw-Hill Higher Education, New York (1992)

    Google Scholar 

  3. Anderson, D.P., Fedak, G.: The computational and storage potential of volunteer computing. In: Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2006), 16–19 May 2006, Singapore, pp. 73–80. IEEE Computer Society (2006)

    Google Scholar 

  4. Yakimets, V.N., Kurochkin, I.I.: Analysis of results of the rating of volunteer distributed computing projects. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2018. CCIS, vol. 965, pp. 472–486. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05807-4_40

    Chapter  Google Scholar 

  5. Anderson, D.P.: BOINC: a system for public-resource computing and storage. In: Buyya, R. (ed.) 5th International Workshop on Grid Computing (GRID 2004), 8 November 2004, Pittsburgh, PA, USA, Proceedings, pp. 4–10. IEEE Computer Society (2004)

    Google Scholar 

  6. Ivashko, E., Chernov, I., Nikitina, N.: A survey of desktop grid scheduling. IEEE Trans. Parallel Distrib. Syst. 29(12), 2882–2895 (2018)

    Article  Google Scholar 

  7. Posypkin, M., Semenov, A.A., Zaikin, O.: Using BOINC desktop grid to solve large scale SAT problems. Comput. Sci. (AGH) 13(1), 25–34 (2012)

    Article  Google Scholar 

  8. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)

    Google Scholar 

  9. Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT problem. J. Autom. Reason. 24(1/2), 165–203 (2000)

    Article  MathSciNet  Google Scholar 

  10. Bard, G.V.: Algebraic Cryptanalysis, 1st edn. Springer, Heidelberg (2009). https://doi.org/10.1007/978-0-387-88757-9. Incorporated

    Book  MATH  Google Scholar 

  11. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_24

    Chapter  Google Scholar 

  12. Courtois, N.T., O’Neil, S., Quisquater, J.-J.: Practical algebraic attacks on the Hitag2 stream Cipher. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 167–176. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04474-8_14

    Chapter  Google Scholar 

  13. Eibach, T., Pilz, E., Völkel, G.: Attacking bivium using SAT solvers. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 63–76. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79719-7_7

    Chapter  MATH  Google Scholar 

  14. Semenov, A., Zaikin, O.: Algorithm for finding partitionings of hard variants of boolean satisfiability problem with application to inversion of some cryptographic functions. SpringerPlus 5(1), 1–16 (2016)

    Article  Google Scholar 

  15. Pavlenko, A., Semenov, A., Ulyantsev, V.: Evolutionary computation techniques for constructing SAT-based attacks in algebraic cryptanalysis. In: Kaufmann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 237–253. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16692-2_16

    Chapter  Google Scholar 

  16. Pavlenko, A., Buzdalov, M., Ulyantsev, V.: Fitness comparison by statistical testing in construction of SAT-based guess-and-determine cryptographic attacks. In: Auger, A., Stützle, T. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2019, Prague, Czech Republic, 13–17 July 2019. pp. 312–320. ACM (2019). https://doi.org/10.1145/3321707.3321847

  17. Semenov, A., Zaikin, O., Otpuschennikov, I., Kochemazov, S., Ignatiev, A.: On cryptographic attacks using backdoors for SAT. In: AAAI 2018, pp. 6641–6648 (2018)

    Google Scholar 

  18. Zaikin, O., Kochemazov, S.: Pseudo-Boolean black-box optimization methods in the context of divide-and-conquer approach to solving hard SAT instances. In: OPTIMA 2018 (Volume), pp. 76–87. DEStech Publications, Inc. (2018)

    Google Scholar 

  19. Semenov, A., Zaikin, O., Bespalov, D., Posypkin, M.: Parallel logical cryptanalysis of the generator A5/1 in BNB-grid system. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 473–483. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23178-0_43

    Chapter  MATH  Google Scholar 

  20. Zaikin, O., Kochemazov, S.: An improved SAT-based guess-and-determine attack on the alternating step generator. In: Nguyen, P., Zhou, J. (eds.) ISC 2017. LNCS, vol. 10599, pp. 21–38. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-69659-1_2

    Chapter  Google Scholar 

  21. Lafitte, F., Markowitch, O., Heule, D.V.: SAT based analysis of LTE stream cipher ZUC. J. Inf. Secur. Appl. 22, 54–65 (2015). Special Issue on Security of Information and Networks

    Article  Google Scholar 

  22. Dwivedi, A.D., Kloucek, M., Morawiecki, P., Nikolic, I., Pieprzyk, J., Wójtowicz, S.: SAT-based cryptanalysis of authenticated ciphers from the CAESAR competition. In: Samarati, P., Obaidat, M.S., Cabello, E. (eds.) Proceedings of the 14th International Joint Conference on e-Business and Telecommunications (ICETE 2017) - Volume 4: SECRYPT, Madrid, Spain, 24–26 July 2017, pp. 237–246. SciTePress (2017)

    Google Scholar 

  23. Black, M., Bard, G.: SAT over BOINC: an application-independent volunteer grid project. In: Jha, S., gentschen Felde, N., Buyya, R., Fedak, G. (eds.) 12th IEEE/ACM International Conference on Grid Computing, GRID 2011, Lyon, France, 21–23 September 2011, pp. 226–227. IEEE Computer Society (2011)

    Google Scholar 

  24. Biró, C., Kovásznai, G., Biere, A., Kusper, G., Geda, G.: Cube-and-Conquer approach for SAT solving on grids. Ann. Math. Inform. 42, 9–21 (2013)

    MathSciNet  Google Scholar 

  25. Le Frioux, L., Baarir, S., Sopena, J., Kordon, F.: PaInleSS: a framework for parallel SAT solving. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 233–250. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_15

    Chapter  MATH  Google Scholar 

  26. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. JSAT 6(4), 245–262 (2009)

    MATH  Google Scholar 

  27. Zhang, H., Bonacina, M.P., Hsiang, J.: PSATO: a distributed propositional prover and its application to quasigroup problems. J. Symb. Comput. 21(4), 543–560 (1996)

    Article  MathSciNet  Google Scholar 

  28. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptography, 1st edn. CRC Press Inc., Boca Raton (1996)

    MATH  Google Scholar 

  29. Golić, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_17

    Chapter  Google Scholar 

  30. Cannière, C.: Trivium: a stream cipher construction inspired by block cipher design principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg (2006). https://doi.org/10.1007/11836810_13

    Chapter  Google Scholar 

  31. Zaikin, O., Manzyuk, M., Kochemazov, S., Bychkov, I., Semenov, A.: A volunteer-computing-based grid architecture incorporating idle resources of computational clusters. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) Proceedings of the Sixth Conference on Numerical Analysis and Applications (NAA 2016). Lecture Notes in Computer Sciences, vol. 10187, pp. 735–742. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-57099-0_89

    Google Scholar 

  32. Hell, M., Johansson, T., Maximov, A., Meier, W.: The grain family of stream ciphers. In: Robshaw and Billet [36], pp. 179–190

    Google Scholar 

  33. Babbage, S., Dodd, M.: The MICKEY stream ciphers. In: Robshaw and Billet [36], pp. 191–209

    Google Scholar 

  34. Coppersmith, D., Krawczyk, H., Mansour, Y.: The shrinking generator. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_3

    Chapter  Google Scholar 

  35. Meier, W., Staffelbach, O.: The self-shrinking generator. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 205–214. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053436

    Chapter  Google Scholar 

  36. Robshaw, M., Billet, O. (eds.): New Stream Cipher Designs. LNCS, vol. 4986. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68351-3

    Book  MATH  Google Scholar 

  37. Otpuschennikov, I., Semenov, A., Gribanova, I., Zaikin, O., Kochemazov, S.: Encoding cryptographic functions to SAT using TRANSALG system. In: ECAI 2016–22nd European Conference on Artificial Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 1594–1595. IOS Press (2016)

    Google Scholar 

  38. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT entering the SAT competition 2018. In: Heule, M., Järvisalo, M., Suda, M. (eds.) Proceedings of SAT Competition 2018 - Solver and Benchmark Descriptions. Department of Computer Science Series of Publications B, vol. B-2018-1, pp. 13–14. University of Helsinki (2018)

    Google Scholar 

  39. Chen, J.: AbcdSAT and glucose hack: various simplifications and optimizations for CDCL SAT solvers. In: Heule, M., Järvisalo, M., Suda, M. (eds.) Proceedings of SAT Competition 2018 - Solver and Benchmark Descriptions. Department of Computer Science Series of Publications B, vol. B-2018-1, pp. 10–12. University of Helsinki (2018)

    Google Scholar 

  40. Irkutsk supercomputer center of SB RAS. http://hpc.icc.ru

  41. Kochemazov, S., Zaikin, O.: ALIAS: a modular tool for finding backdoors for SAT. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 419–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_25

    Chapter  MATH  Google Scholar 

  42. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002). https://doi.org/10.1016/S0304-3975(01)00182-7

    Article  MathSciNet  Google Scholar 

  43. Yasumoto, T., Okuwaga, T.: Rokk 1.0.1. In: Belov, A., Diepold, D., Heule, M., Järvisalo, M. (eds.) SAT Competition 2014, p. 70 (2014)

    Google Scholar 

  44. Afanasiev, A., Bychkov, I., Manzyuk, M., Posypkin, M., Semenov, A., Zaikin, O.: Technology for integrating idle computing cluster resources into volunteer computing projects. In: Proceedings of the 5th International Workshop on Computer Science and Engineering, Moscow, Russia, pp. 109–114 (2015)

    Google Scholar 

Download references

Acknowledgements

The research was partially supported by Council for Grants of the President of the Russian Federation (grant no. MK-4155.2018.9) and by Russian Foundation for Basic Research (grant no. 19-07-00746-a). The author thanks all SAT@home participants for their computational resources, Stepan Kochemazov for fruitful discussions and Ilya Kurochkin for maintaining the project’s server.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Zaikin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zaikin, O. (2019). SAT-Based Cryptanalysis: From Parallel Computing to Volunteer Computing. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2019. Communications in Computer and Information Science, vol 1129. Springer, Cham. https://doi.org/10.1007/978-3-030-36592-9_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36592-9_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36591-2

  • Online ISBN: 978-3-030-36592-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics