Advertisement

Three-Dimensional Ultrasound Tomography: Mathematical Methods and Experimental Results

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1129)

Abstract

This paper is concerned with developing the methods for solving inverse problems of ultrasound tomography under the model that accounts for diffraction, refraction and absorption. The inverse problem is posed as a nonlinear coefficient inverse problem for the wave equation. Iterative numerical algorithms have been developed to solve this inverse problem using supercomputers. The paper presents the results of 3D tomographic imaging of a test sample with acoustic properties close to those of human soft tissues. The data used for imaging were collected in a physical experiment on a test bench for ultrasound tomographic studies. The frequency range of sounding pulses was 50–800 kHz. The acoustic field was registered on a cylindrical surface surrounding the test sample. The 3D sound speed image was reconstructed using multistage iterative algorithm with gradually increasing signal bandwidth. The results showed that the tomographic methods developed can achieve a high spatial resolution while the contrast of the object doesn’t exceed 20%. The proposed algorithms are designed for compact GPU clusters. Such clusters can be used as computing devices in medical tomographic facilities.

Keywords

Ultrasound tomography Coefficient inverse problem Medical imaging GPU cluster 

Notes

Acknowledgements

This work was supported by Russian Science Foundation [grant number 17-11-01065]. The research is carried out at Lomonosov Moscow State University. The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University.

References

  1. 1.
    Bazulin, E.G., Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Parallel CPU- and GPU-algorithms for inverse problems in nondestructive testing. Lobachevskii J. Math. 39(4), 486–493 (2018).  https://doi.org/10.1134/S1995080218040030MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Sak, M., et al.: Using speed of sound imaging to characterize breast density. Ultrasound Med. Biol. 43(1), 91–103 (2017).  https://doi.org/10.1016/j.ultrasmedbio.2016.08.021CrossRefGoogle Scholar
  3. 3.
    Wiskin, J., et al.: Three-dimensional nonlinear inverse scattering: quantitative transmission algorithms, refraction corrected reflection, scanner design, and clinical results. J. Acoust. Soc. Am. 133(5), 3229–3229 (2013).  https://doi.org/10.1121/1.4805138CrossRefGoogle Scholar
  4. 4.
    Birk, M., Dapp, R., Ruiter, N.V., Becker, J.: GPU-based iterative transmission reconstruction in 3D ultrasound computer tomography. J. Parallel Distrib. Comput. 74, 1730–1743 (2014).  https://doi.org/10.1016/j.jpdc.2013.09.007CrossRefGoogle Scholar
  5. 5.
    Natterer, F.: Sonic imaging. Handbook of Mathematical Methods in Imaging, pp. 1–23. Springer, New York (2014).  https://doi.org/10.1007/978-3-642-27795-5_37-2CrossRefGoogle Scholar
  6. 6.
    Klibanov, M.V., Timonov, A.A.: Carleman estimates for coefficient inverse problems and numerical applications. Walter de Gruyter GmbH (2004).  https://doi.org/10.1515/9783110915549
  7. 7.
    Goncharsky, A.V., Romanov, S.Y.: Iterative methods for solving coefficient inverse problems of wave tomography in models with attenuation. Inverse Probl. 33(2), 025003 (2017).  https://doi.org/10.1088/1361-6420/33/2/025003MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Goncharsky, A., Seryozhnikov, S.: Supercomputer technology for ultrasound tomographic image reconstruction: mathematical methods and experimental results. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2018. CCIS, vol. 965, pp. 401–413. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-05807-4_34CrossRefGoogle Scholar
  9. 9.
    Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Supercomputer technologies in tomographic imaging applications. Supercomput. Frontiers Innovations 3(1), 41–66 (2016). https://doi.org/10.14529/jsfi160103Google Scholar
  10. 10.
    Goncharsky, A.V., Seryozhnikov, S.Y.: Supercomputer simulations in design of ultrasound tomography devices. Supercomput. Frontiers Innovations 5(3), 111–115 (2018). https://doi.org/10.14529/jsfi180321Google Scholar
  11. 11.
    Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Low-frequency ultrasonic tomography: mathematical methods and experimental results. Moscow Univ. Phys. Bull. 74(1), 43–51 (2019).  https://doi.org/10.3103/S0027134919010090CrossRefGoogle Scholar
  12. 12.
    Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31(139), 629–629 (1977).  https://doi.org/10.1090/s0025-5718-1977-0436612-4MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: Numerical Methods for the Solution of Ill-Posed Problems. Springer, Netherlands (1995).  https://doi.org/10.1007/978-94-015-8480-7CrossRefzbMATHGoogle Scholar
  14. 14.
    Bakushinsky, A., Goncharsky, A.: Ill-Posed Problems: Theory and Applications. Springer, Berlin (1994).  https://doi.org/10.1007/978-94-011-1026-6CrossRefGoogle Scholar
  15. 15.
    Goncharsky, A.V., Romanov, S.Y.: Supercomputer technologies in inverse problems of ultrasound tomography. Inverse Probl. 29(7), 075004 (2013).  https://doi.org/10.1088/0266-5611/29/7/075004MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Low-frequency three-dimensional ultrasonic tomography. Dokl. Phys. 61(5), 211–214 (2016).  https://doi.org/10.1134/s1028335816050086CrossRefGoogle Scholar
  17. 17.
    Goncharsky, A., Romanov, S., Seryozhnikov, S.: A computer simulation study of soft tissue characterization using low-frequency ultrasonic tomography. Ultrasonics 67, 136–150 (2016).  https://doi.org/10.1016/j.ultras.2016.01.008CrossRefGoogle Scholar
  18. 18.
    Goncharsky, A.V., Seryozhnikov, S.V.: The architecture of specialized GPU clusters used for solving the inverse problems of 3D low-frequency ultrasonic tomography. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2017. CCIS, pp. 363–375 (2017).  https://doi.org/10.1007/978-3-319-71255-0_29Google Scholar
  19. 19.
    Fink, M.: Time reversal in acoustics. Contemp. Phys. 37(2), 95–109 (1996).  https://doi.org/10.1080/00107519608230338CrossRefGoogle Scholar
  20. 20.
    Romanov, S.: Supercomputer simulation study of the convergence of iterative methods for solving inverse problems of 3D acoustic tomography with the data on a cylindrical surface. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2018. CCIS, vol. 965, pp. 388–400. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-05807-4_33CrossRefGoogle Scholar
  21. 21.
    Voevodin, V.V., et al.: Supercomputer lomonosov-2: large scale, deep monitoring and fine analytics for the user community. Supercomput. Frontiers Innovations 6(2).  https://doi.org/10.14529/jsfi190201

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations