Skip to main content

Coupling of PDE and ODE Solvers in INMOST Parallel Platform: Application to Electrophysiology

  • 637 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 1129)

Abstract

Mathematical modeling of cardiac electrophysiology is one of important and widely developing problems in personalized medicine. In this paper we present numerical simulations of electrophysiology in a human heart ventricles using high performance computing. For cardiac electrophysiology equations monodomain model is used. This PDE problem is discretized by P1 finite elements with the first order accurate implicit time scheme. Ionic currents are described by system of ODEs from O’Hara–Rudy model, provided by CellML model repository. The whole problem is solved using the CVODE solver, Ani3D and INMOST platforms. Efficiency in numerical simulations on high performance systems is almost 50% on 192 cores.

Keywords

  • Cardiac electrophysiology
  • High performance computing
  • O’Hara-Rudy model
  • Monodomain model

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-36592-9_16
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-36592-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Hindmarsh, A.C., et al.: SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31, 363–396 (2005)

    MathSciNet  CrossRef  Google Scholar 

  2. Yu, T., et al.: The physiome model repository 2. Bioinformatics 27, 743–744 (2011)

    CrossRef  Google Scholar 

  3. Mirams, G., et al.: Chaste: an open source C++ library for computational physiology and biology. PLOS Comput. Biol. 9(3), e1002970 (2013)

    MathSciNet  CrossRef  Google Scholar 

  4. Trayanova, N.A.: Whole-heart modeling. Circ. Res. 108(1), 113–128 (2011)

    CrossRef  Google Scholar 

  5. Vázquez, M., et al.: Alya red CCM: HPC-based cardiac computational modelling. In: Klapp, J., Ruíz Chavarría, G., Medina Ovando, A., López Villa, A., Sigalotti, L. (eds.) Selected Topics of Computational and Experimental Fluid Mechanics. ESE, pp. 189–207. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-11487-3_11

    CrossRef  Google Scholar 

  6. CardioSolv Ablation Technologies. https://www.cardiosolv.com/. Accessed 15 Apr 2019

  7. A popular open-source (LGPLv3) computing platform for solving partial differential equations (PDEs). https://fenicsproject.org. Accessed 15 Apr 2019

  8. Chernyshenko, A., Danilov, A., Vassilevski, Y.: Numerical simulations for cardiac electrophysiology problems. In: Mondaini, R. (ed.) BIOMAT 2018. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23433-1_21

    CrossRef  Google Scholar 

  9. O’Hara, T., Virág, L., Varró, A., Rudy, Y.: Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput. Biol. 7, e1002061 (2011)

    CrossRef  Google Scholar 

  10. Ani3D (Advanced Numerical Instruments 3D). https://sourceforge.net/projects/ani3d/. Accessed 15 Apr 2019

  11. INMOST (Integrated Numerical Modelling and Object-oriented Supercomputing Technologies). http://inmost.org/. Accessed 15 Apr 2019

  12. PETSc – library for lineat system solving. https://www.mcs.anl.gov/petsc/. Accessed 15 Apr 2019

  13. Kramarenko, V., Vassilevsky, Y., Konshin, I.: Ani3D extension of parallel platform Inmost and hydrodynamic applications. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2017, vol. 793. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71255-0_17

    CrossRef  Google Scholar 

  14. CGAL – The Computational Geometry Algorithms Library. https://cgal.org/. Accessed 15 Apr 2019

  15. ParMETIS – Parallel Graph Partitioning and Fill-reducing Matrix Ordering. http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

  16. INM RAS cluster. http://cluster2.inm.ras.ru/. Accessed 15 Apr 2019

  17. Bayer, J., Blake, R., Plank, G., Trayanova, N.: A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann. Biomed. Eng. 40(10), 2243–2254 (2012)

    CrossRef  Google Scholar 

Download references

Acknowledgements

The research was supported by RFBR grants 17-01-00886 and 18-00-01524 (18-00-01661).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily Kramarenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Chernyshenko, A., Danilov, A., Kramarenko, V. (2019). Coupling of PDE and ODE Solvers in INMOST Parallel Platform: Application to Electrophysiology. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2019. Communications in Computer and Information Science, vol 1129. Springer, Cham. https://doi.org/10.1007/978-3-030-36592-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36592-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36591-2

  • Online ISBN: 978-3-030-36592-9

  • eBook Packages: Computer ScienceComputer Science (R0)