Skip to main content

DNA Machines and Nanobots

  • Chapter
  • First Online:
DNA Beyond Genes
  • 720 Accesses

Abstract

The robust ability of DNA to self-assemble into miscellaneous nanostructures, as it was described in the previous chapter, can also be employed for the construction of molecular size active nanomechanical devices and nanorobots, aka molecular machines or nanomachines, made entirely or partially of DNA. This idea is so inspiring that in the past decade there was a burst of activity in the area of DNA machines: a diverse variety of them have been designed based on several different principles, and their workability has been proved using different physical techniques.

Our hands, and the machines they operate, are simply too large to manipulate individual molecules. We must learn to program molecules to manipulate themselves.

David Doty (American computer mathematician), Theory of Algorithmic Self-Assembly (Communications of the ACM, 2012)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang F, Willner B, Willner I (2014) DNA-based machines. Top Curr Chem 354:279–338

    Article  CAS  Google Scholar 

  2. Yang X, Vologodskii AV, Liu B, Kemper B, Seeman NC (1998) Torsional control of double-stranded DNA branch migration. Biopolymers 45:69–83

    Article  CAS  Google Scholar 

  3. Vologodskii A (2019) Topology and physics of circular DNA. CRC Press, Boca Raton

    Google Scholar 

  4. Koltover I, Wagner K, Safinya CR (2000) DNA condensation in two dimensions. Proc Natl Acad Sci U S A 97:14046–14051

    Article  CAS  Google Scholar 

  5. Niemeyer CM et al (2001) Nucleic acid supercoiling as a means for ionic switching of DNA-nanoparticle networks. ChemBioChem 2:260–264

    Article  CAS  Google Scholar 

  6. Edel J, Kim MJ, Ivanov A (eds) (2016) Nanofluidics. Royal Society of Chemistry, Cambridge

    Google Scholar 

  7. Jahnen-Dechent W, Ketteler M (2012) Magnesium basics. Clin Kidney J 5(Suppl 1):i3–i14

    Article  CAS  Google Scholar 

  8. Rajendran A, Endo M, Hidaka K, Sugiyama H (2013) Direct and real-time observation of rotary movement of a DNA nanomechanical device. J Am Chem Soc 135:1117–1123

    Article  CAS  Google Scholar 

  9. Chaires JB, Sturtevant JM (1986) Thermodynamics of the B to Z transition in poly(m5dG-dC). Proc Natl Acad Sci U S A 83:5479–5483

    Article  CAS  Google Scholar 

  10. Lee M, Kim SH, Hong SC (2010) Minute negative superhelicity is sufficient to induce the B–Z transition in the presence of low tension. Proc Natl Acad Sci U S A 107:4985–4990

    Article  CAS  Google Scholar 

  11. Verschueren D (2018) Plasmonic Nanopores for Single Molecule Sensing. Chapter 10. Towards flow-driven rotation of a DNA origami nanomotor. Doctorate thesis, Delft University of Technology. https://doi.org/10.4233/uuid:a0099c3d-3244-4789-baa7-4819d7a429fa

  12. Yurke B, Turberfield AJ, Mills AP Jr, Simmel FC, Neumann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406:605–608

    Article  CAS  Google Scholar 

  13. Li JJ, Tan W (2002) A single DNA molecule nanomotor. Nano Lett 2:315–318

    Article  CAS  Google Scholar 

  14. Passano LM, McCullough CB (1964) Co-ordinating systems and behaviour in Hydra: I. Pacemaker system of the periodic contractions. J Exp Biol 41:643–664

    Google Scholar 

  15. Harley CM, Rossi M, Cienfuegos J, Wagenaar D (2013) Discontinuous locomotion and prey sensing in the leech. J Exp Biol 216:1890–1897

    Article  Google Scholar 

  16. Plaut RH (2015) Mathematical model of inchworm locomotion. Int J Non-Lin Mech 76:56–63

    Article  Google Scholar 

  17. Moreira F, Abundis A, Aguirre M, Castillo J, Bhounsule P (2018) An inchworm-inspired robot based on modular body, electronics and passive friction pads performing the two-anchor crawl gait. J Bionic Eng 15:820–826

    Article  Google Scholar 

  18. Ning J, Ti C, Liu Y (2017) Inchworm inspired pneumatic soft robot based on friction hysteresis. J Robot Autom 1:54–63

    Google Scholar 

  19. Chen Y, Mao C (2004) Putting a brake on an autonomous DNA nanomotor. J Am Chem Soc 126:8626–8627

    Article  CAS  Google Scholar 

  20. Green SJ, Bath J, Turberfield AJ (2008) Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys Rev Lett 101:238101

    Article  CAS  Google Scholar 

  21. Omabegho T, Sha R, Seeman NC (2009) A bipedal DNA Brownian motor with coordinated legs. Science 324(5923):67–71

    Article  CAS  Google Scholar 

  22. Liang X, Nishioka H, Takenaka N, Asanuma H (2008) A DNA nanomachine powered by light irradiation. ChemBioChem 9:702–705

    Article  CAS  Google Scholar 

  23. Kang H et al (2009) Single-DNA molecule nanomotor regulated by photons. Nano Lett 9:2690–2696

    Article  CAS  Google Scholar 

  24. Ranallo S, Prevost-Tremblay C, Idili A, Vallee-Belisle A, Ricci F (2017) Antibody-powered nucleic acid release using a DNA-based nanomachine. Nat Commun 8:15150

    Article  CAS  Google Scholar 

  25. Thubagere AJ et al (2017) A cargo-sorting DNA robot. Science 357:eaan6558

    Article  Google Scholar 

  26. Reif JH (2017) DNA robots sort as they walk. Science 357(6356):1095–1096

    Article  CAS  Google Scholar 

  27. Arnon S et al (2016) Thought-controlled nanoscale robots in a living host. PLoS One 11:e0161227

    Article  Google Scholar 

  28. Deal WFIII, Hsiung SC (2007) Exploring telerobotics: a radio-controlled robot. Technol Teach 10:11–17

    Google Scholar 

  29. Singh S, Singh A (2013) Current status of nanomedicine and nanosurgery. Anesth Essays Res 7:237–242

    Article  Google Scholar 

  30. Asimov I (1966) Fantastic voyage. Houghton Mifflin, Boston

    Google Scholar 

  31. Kopperger E et al (2018) A self-assembled nanoscale robotic arm controlled by electric fields. Science 359:296–301

    Article  CAS  Google Scholar 

  32. Lauback S et al (2018) Real-time magnetic actuation of DNA nanodevices via modular integration with stiff micro-levers. Nat Commun 9:1446

    Article  Google Scholar 

  33. Simmel FC (2012) DNA-based assembly lines and nanofactories. Curr Opin Biotechnol 23:516–521

    Article  CAS  Google Scholar 

  34. Li X, Liu DR (2004) DNA-templated organic synthesis: nature’s strategy for controlling chemical reactivity applied to synthetic molecules. Angew Chem Int Ed Engl 43:4848–4870

    Article  CAS  Google Scholar 

  35. Francke C, Edstrom JE, McDowall AW, Miller OL Jr (1982) Electron microscopic visualization of a discrete class of giant translation units in salivary gland cells of Chironomus tentans. EMBO J 1:59–62

    Article  CAS  Google Scholar 

  36. Marras AE, Zhou L, Su HJ, Castro CE (2015) Programmable motion of DNA origami mechanisms. Proc Natl Acad Sci U S A 112:713–718

    Article  CAS  Google Scholar 

  37. Chandran H, Gopalkrishnan N, Reif J (2013) DNA nanorobotics. In: Mavroidis C, Ferreira A (eds) Nanorobotics. Springer, New York, pp 355–382

    Chapter  Google Scholar 

  38. Endo M, Sugiyama H (2018) DNA origami nanomachines. Molecules 23:1766

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demidov, V.V. (2020). DNA Machines and Nanobots. In: DNA Beyond Genes. Springer, Cham. https://doi.org/10.1007/978-3-030-36434-2_4

Download citation

Publish with us

Policies and ethics