Skip to main content

Hiding and Storing Messages and Data in DNA

  • Chapter
  • First Online:
Book cover DNA Beyond Genes

Abstract

In the living cell, DNA functions as a principal informational molecule: it holds a linear array of heritable genetic information and it is the storehouse of this information. And while in nature DNA encodes proteins, the current ability to readily generate sufficiently long stretches of synthetic DNAs can be used for encrypting in DNA sequences some secret messages and for encoding and storing in DNA the large amounts of digital data, or even for tagging (or marking) and tracing various objects and materials with the coded DNA labels. To practically do so, we also need the ability to selectively amplify tiny amounts of DNA carrying an encoded or encrypted message or a label, and to read the DNA sequence in order to retrieve the DNA message (or DNA label). Fortunately, all this can now be done automatically by special machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Experiments proved that bacteriophages and bacterial spores , which are extraordinarily resistant living species, can survive in the harsh environment of outer space if they are laid within meteorite rocks to be shielded from harmful cosmic radiation [6]. These rocks would also protect microorganisms from intense frictional heat during a high-speed passage through the Earth’s atmosphere [7].

  2. 2.

    Instead of encryption code, digital binary encoding scheme was used in this experiment, which will be discussed below in Sect. 2.3.

  3. 3.

    The general idea of using DNA as a minute information storage tool was originally proposed in mid-1960s by American mathematician Norbert Wiener, one of the founding fathers of cybernetics, and independently by Russian physicist Mikhail Neiman, who also contemplated at the same time the possibility of storing and retrieving data in DNA molecules [22].

  4. 4.

    In 2002, the group of researchers from Duke University (Durham, USA) intended to build very large, petabit-sized (~1015 bits) DNA-based data storage [29], but this promising project has never been completed.

  5. 5.

    In this paper, renowned physicist Richard Feynman outlined the concepts of nanotechnology.

  6. 6.

    It is however possible that in the future certain innovative technologies would make it possible the faster reading of DNA sequences similar to the reading of magnetic tapes.

References

  1. Hayden EC (2015) Pint-sized DNA sequencer impresses first users: portable device offers on-the-spot data to fight disease, catalogue species and more. Nature 521:15–16

    Article  CAS  Google Scholar 

  2. Nanopore (2019) MinION Brochure. https://nanoporetech.com/sites/default/files/s3/literature/MinION-Brochure-14Mar2019.pdf

  3. Clelland CT et al (1999) Hiding messages in DNA microdots. Nature 399:533–534

    Article  CAS  Google Scholar 

  4. Yokoo H, Oshima T (1979) Is bacteriophage ϕX174 DNA a message from an extraterrestrial intelligence? Icarus 38:148–153

    Article  CAS  Google Scholar 

  5. Hoch JA, Losick R (1997) Panspermia, spores and the Bacillus subtilis genome. Nature 390:237–238

    Article  CAS  Google Scholar 

  6. Olsson-Francis K, Cockell CS (2010) Experimental methods for studying microbial survival in extraterrestrial environments. J Microbiol Methods 80:1–13

    Article  CAS  Google Scholar 

  7. Fajardo-Cavazos P, Link L, Melosh HJ, Nicholson WL (2005) Bacillus subtilis spores on artificial meteorites survive hypervelocity atmospheric entry: implications for lithopanspermia. Astrobiology 5:726–736

    Article  CAS  Google Scholar 

  8. Shcherbak VI, Makukov MA (2013) The "Wow! signal" of the terrestrial genetic code. Icarus 224:228–242

    Article  Google Scholar 

  9. Marx G (1979) Message through time. Acta Astronaut 6:221–225

    Article  Google Scholar 

  10. Arita M, Ohashi Y (2004) Secret signatures inside genomic DNA. Biotechnol Prog 20:1605–1607

    Article  CAS  Google Scholar 

  11. Gibson DG et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56

    Article  CAS  Google Scholar 

  12. Bancroft C, Clelland CT (2001) DNA-based steganography. US patent 6,312,911

    Google Scholar 

  13. Jung L, Hayward JA, Liang MB (2014) DNA marking of previously undistinguished items for traceability. US patent application US20140272097A1

    Google Scholar 

  14. Radzicka A, Wolfenden R (1995) A proficient enzyme. Science 267:90–93

    Article  CAS  Google Scholar 

  15. Karni M et al (2013) Thermal degradation of DNA. DNA Cell Biol 32:298–301

    Article  CAS  Google Scholar 

  16. Integrated DNA Technologies (2014) Oligonucleotide stability study. https://sfvideo.blob.core.windows.net/sitefinity/docs/default-source/technical-report/stability-of-oligos.pdf?sfvrsn=c6483407_10

  17. Paunescu D, Fuhrer R, Grass RN (2013) Protection and deprotection of DNA—high-temperature stability of nucleic acid barcodes for polymer labeling. Angew Chem Int Ed Engl 52:4269–4272

    Article  CAS  Google Scholar 

  18. Fabre AL et al (2017) High DNA stability in white blood cells and buffy coat lysates stored at ambient temperature under anoxic and anhydrous atmosphere. PLoS One 12:e0188547

    Article  Google Scholar 

  19. Sabir IH, Torgersen J, Haldorsen S, Alestrom P (1999) DNA tracers with information capacity and high detection sensitivity tested in groundwater studies. Hydrogeol J 7:264–272

    Article  Google Scholar 

  20. Chow JS, Rudulph JG (2014) Systems, methods, and a kit for determining the presence of fluids of interest. International patent application WO2014005031A1

    Google Scholar 

  21. Cox JPL (2001) Bar coding objects with DNA. Analyst 126:545–547

    Article  CAS  Google Scholar 

  22. Neiman MS (1965) On the molecular memory systems and the directed mutations. Radiotekhnika (Russian) 20(6):1–8

    Google Scholar 

  23. Davis J (1996) Microvenus. Art J 55(1):70–74

    Article  Google Scholar 

  24. French E (1971) The development of Mycenaean terracotta figurines. Annu. Br. Sch. Athens 66:101–187

    Article  Google Scholar 

  25. Olsen BA (1998) Women, children and the family in the late Aegean Bronze Age: differences in Minoan and Mycenaean constructions of gender. World Archaeol 29:380–392

    Article  Google Scholar 

  26. Skinner GM, Visscher K, Mansuripur M (2007) Biocompatible writing of data into DNA. J Bionanosci 1:1–5

    Article  Google Scholar 

  27. Ailenberg M, Rotstein OD (2009) An improved Huffman coding method for archiving text, images, and music characters in DNA. BioTechniques 47:747–754

    Article  CAS  Google Scholar 

  28. De Silva PY, Ganegoda GU (2016) New trends of digital data storage in DNA. Biomed Res Int 2016:8072463

    Article  Google Scholar 

  29. Reif JH et al (2002) Experimental construction of very large scale DNA databases with associative search capability. Lect Notes Comput Sci 2340:231–247

    Article  Google Scholar 

  30. Church GM, Gao Y, Kosuri S (2012) Next-generation digital information storage in DNA. Science 337:1628

    Article  CAS  Google Scholar 

  31. Erlich Y, Zielinski D (2017) DNA Fountain enables a robust and efficient storage architecture. Science 355:950–954

    Article  CAS  Google Scholar 

  32. Feynman RP (1960) There’s plenty of room at the bottom: an invitation to enter a new field of physics. Eng Sci 23(5):22–36

    Google Scholar 

  33. Cano RJ, Borucki M (1995) Revival and identification of bacterial spores in 25 to 40 million year old Dominican amber. Science 268:1060–1064

    Article  CAS  Google Scholar 

  34. Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900

    Article  CAS  Google Scholar 

  35. Grass RN et al (2015) Robust chemical preservation of digital information on DNA in silica with error-correcting codes. Angew Chem Int Ed Engl 54:2552–2555

    Article  CAS  Google Scholar 

  36. Hornyak T (2013) Super long-term storage. Sci Am 308:21

    Article  Google Scholar 

  37. Regalado A (2017) Microsoft has a plan to add DNA data storage to its cloud. MIT Technology Review 120. www.technologyreview.com/s/607880/microsoft-has-a-plan-to-add-dna-data-storage-to-its-cloud

  38. Newman S et al (2019) High density DNA data storage library via dehydration with digital microfluidic retrieval. Nat Commun 10:1706

    Article  CAS  Google Scholar 

  39. Alistar M, Gaudenz U (2017) OpenDrop: an integrated do-it-yourself platform for personal use of biochips. Bioengineering 4:45

    Article  Google Scholar 

  40. Moore GE (2006) Progress in digital integrated electronics. IEEE Solid-State Circuits Society Newsl 9:36–37

    Article  Google Scholar 

  41. Carlson R (2003) The pace and proliferation of biological technologies. Biosecur Bioterror 1:203–214

    Article  Google Scholar 

  42. Takinoue M, Suyama A (2006) Hairpin-DNA memory using molecular addressing. Small 2:1244–1247

    Article  CAS  Google Scholar 

  43. Al Ouahabi A, Amalian JA, Charles L, Lutz JF (2017) Mass spectrometry sequencing of long digital polymers facilitated by programmed inter-byte fragmentation. Nat Commun 8:967

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demidov, V.V. (2020). Hiding and Storing Messages and Data in DNA. In: DNA Beyond Genes. Springer, Cham. https://doi.org/10.1007/978-3-030-36434-2_2

Download citation

Publish with us

Policies and ethics