Abstract
The Notch signaling pathway seems deceptively simple, with its key feature being a direct connection between extracellular signal and transcriptional output without the need for an extended chain of protein intermediaries as required by so many other signaling paradigms. However, this apparent simplicity hides considerable complexity. Consistent with its central role in many aspects of development, Notch signaling has an extensive collection of mechanisms that it employs alongside of its core transcriptional machinery. These so-called noncanonical Notch pathways diversify the potential outputs of Notch, and allow it to coordinate regulation of many aspects of the biology of cells. Here we will review noncanonical Notch signaling with special attention to the role of posttranslational modifications of Notch. We will also consider the importance of coordinating the activity of gene expression with regulation of cell morphology in biological processes, including axon guidance and other morphological events during embryogenesis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- CNS:
-
Central nervous system
- CSL:
-
CBF/RBP-Jκ in mammals, Su(H) in Drosophila, and Lag-1 in C. elegans
- DSL:
-
Delta, Serrate, LAG-2
- NICD:
-
Notch intracellular domain
References
Abe N, Borson SH, Gambello MH, Wang F, Cavalli V (2010) Mammalian target of rapamycin (mTOR) activation increases axonal growth capacity of injured peripheral nerves. J Biol Chem 285(36):28034–28043. https://doi.org/10.1074/jbc.M110.125336
Adams RH, Eichmann A (2010) Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol 2:a001875. https://doi.org/10.1101/cshperspect.a001875
Adams RH, Lohrum M, Klostermann A, Betz H, Püschel AW (1997) The chemorepulsive activity of secreted semaphorins is regulated by furin-dependent proteolytic processing. EMBO J 16:6077–6086. https://doi.org/10.1093/emboj/16.20.6077
Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae S-K, Kittappa R, McKay RDG (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826. https://doi.org/10.1038/nature04940
Artavanis-Tsakonas S, Simpson P (1991) Choosing a cell fate: a view from the Notch locus. Trends Genet 7:403–408. https://doi.org/10.1016/0168-9525(91)90264-Q
Aster JC, Pear WS, Blacklow SC (2017) The varied roles of Notch in cancer. Annu Rev Pathol 12:245–275. https://doi.org/10.1146/annurev-pathol-052016-100127
Attwell S, Mills J, Troussard A, Wu C, Dedhar S (2003) Integration of cell attachment, cytoskeletal localization, and signaling by integrin-linked kinase (ILK), CH-ILKBP, and the tumor suppressor PTEN. Mol Biol Cell 14:4813–4825. https://doi.org/10.1091/mbc.e03-05-0308
Bai G, Chivatakarn O, Bonanomi D, Lettieri K, Franco L, Xia C, Stein E, Ma L, Lewcock JW, Pfaff SL (2011) Presenilin-dependent receptor processing is required for axon guidance. Cell 144:106–118. https://doi.org/10.1016/j.cell.2010.11.053
Bashaw GJ, Klein R (2010) Signaling from axon guidance receptors. Cold Spring Harb Perspect Biol 2:a001941. https://doi.org/10.1101/cshperspect.a001941
Bock HH, Herz J (2003) Reelin activates Src family tyrosine kinases in neurons. Curr Biol 13:18–26. https://doi.org/10.1016/S0960-9822(02)01403-3
Borggrefe T, Lauth M, Zwijsen A, Huylebroeck D, Oswald F, Giaimo BD (2016) The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways. Biochim Biophys Acta Mol Cell Res 1863:303–313. https://doi.org/10.1016/j.bbamcr.2015.11.020
Bosch C, Masachs N, Exposito-Alonso D, Martínez A, Teixeira CM, Fernaud I, Pujadas L, Ulloa F, Comella JX, DeFelipe J, Merchán-Pérez A, Soriano E (2016) Reelin regulates the maturation of dendritic spines, synaptogenesis and glial ensheathment of newborn granule cells. Cereb Cortex 26:4282–4298. https://doi.org/10.1093/cercor/bhw216
Bray SJ (2016) Notch signalling in context. Nat Rev Mol Cell Biol 17:722–735. https://doi.org/10.1038/nrm.2016.94
Bush G, diSibio G, Miyamoto A, Denault J-B, Leduc R, Weinmaster G (2001) Ligand-induced signaling in the absence of Furin processing of Notch1. Dev Biol 229:494–502. https://doi.org/10.1006/dbio.2000.9992
Cammarata GM, Bearce EA, Lowery LA (2016) Cytoskeletal social networking in the growth cone: how +TIPs mediate microtubule-actin cross-linking to drive axon outgrowth and guidance. Cytoskeleton (Hoboken, NJ) 73:461–476. https://doi.org/10.1002/cm.21272
Cao F, Hata R, Zhu P, Nakashiro K, Sakanaka M (2010) Conditional deletion of Stat3 promotes neurogenesis and inhibits astrogliogenesis in neural stem cells. Biochem Biophys Res Commun 394:843–847. https://doi.org/10.1016/j.bbrc.2010.03.092
Crowner D, Le Gall M, Gates MA, Giniger E (2003) Notch steers Drosophila ISNb motor axons by regulating the Abl signaling pathway. Curr Biol 13:967–972. https://doi.org/10.1016/S0960-9822(03)00325-7
Dent EW, Gupton SL, Gertler FB (2011) The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol 3. https://doi.org/10.1101/cshperspect.a001800
Dickson BJ (2002) Molecular mechanisms of axon guidance. Science 298:1959–1964. https://doi.org/10.1126/science.1072165
Elkins T, Zinn K, McAllister L, Hoffman FM, Goodman CS (1990) Genetic analysis of a Drosophila neural cell adhesion molecule: interaction of fasciclin I and Abelson tyrosine kinase mutations. Cell 60:11
Engler A, Zhang R, Taylor V (2018) Notch and neurogenesis. Adv Exp Med Biol 1066:223–234. https://doi.org/10.1007/978-3-319-89512-3_11
Espinosa L, Inglés-Esteve J, Aguilera C, Bigas A (2003) Phosphorylation by glycogen synthase kinase-3β down-regulates Notch activity, a link for Notch and Wnt pathways. J Biol Chem 278:32227–32235. https://doi.org/10.1074/jbc.M304001200
Fambrough D, Pan D, Rubin GM, Goodman CS (1996) The cell surface metalloprotease/disintegrin Kuzbanian is required for axonal extension in Drosophila. Proc Natl Acad Sci U S A 93:13233–13238. https://doi.org/10.1073/pnas.93.23.13233
Foltz DR, Nye JS (2001) Hyperphosphorylation and association with RBP of the intracellular domain of Notch1. Biochem Biophys Res Commun 286:484–492. https://doi.org/10.1006/bbrc.2001.5421
Foltz DR, Santiago MC, Berechid BE, Nye JS (2002) Glycogen synthase kinase-3β modulates Notch signaling and stability. Curr Biol 12:1006–1011. https://doi.org/10.1016/S0960-9822(02)00888-6
Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16:633–647. https://doi.org/10.1016/j.devcel.2009.03.010
Franklin JL, Berechid BE, Cutting FB, Presente A, Chambers CB, Foltz DR, Ferreira A, Nye JS (1999) Autonomous and non-autonomous regulation of mammalian neurite development by Notch1 and Delta1. Curr Biol 9:1448–1457. https://doi.org/10.1016/S0960-9822(00)80114-1
Fryer CJ, Lamar E, Turbachova I, Kintner C, Jones KA (2002) Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev 16:1397–1411. https://doi.org/10.1101/gad.991602
Fryer CJ, White JB, Jones KA (2004) Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 16:509–520. https://doi.org/10.1016/j.molcel.2004.10.014
Gertler FB, Liebl EC, Hoffmann FM (1995) enabled, a dosage-sensitive suppressor of mutations m the Drosophila Abl tyrosine kinase, encodes an Abl substrate with SH3 domain-binding properties. Genes Dev 9:14
Giniger E (1998) A role for Abl in Notch signaling. Neuron 20:667–681. https://doi.org/10.1016/S0896-6273(00)81007-7
Giniger E (2012) Notch signaling and neural connectivity. Curr Opin Genet Dev 22:339–346. https://doi.org/10.1016/j.gde.2012.04.003
Giniger E, Jan LY, Jan YN (1993) Specifying the path of the intersegmental nerve of the Drosophila embryo: a role for Delta and Notch. Development 117:431–440
Gomez-Lamarca MJ, Falo-Sanjuan J, Stojnic R, Abdul Rehman S, Muresan L, Jones ML, Pillidge Z, Cerda-Moya G, Yuan Z, Baloul S, Valenti P, Bystricky K, Payre F, O’Holleran K, Kovall R, Bray SJ (2018) Activation of the Notch signaling pathway in vivo elicits changes in CSL nuclear dynamics. Dev Cell 44:611–623.e7. https://doi.org/10.1016/j.devcel.2018.01.020
Gordon WR, Vardar-Ulu D, L’Heureux S, Ashworth T, Malecki MJ, Sanchez-Irizarry C, McArthur DG, Histen G, Mitchell JL, Aster JC, Blacklow SC (2009) Effects of S1 cleavage on the structure, surface export, and signaling activity of human Notch1 and Notch2. PLoS One 4:e6613. https://doi.org/10.1371/journal.pone.0006613
Gordon WR, Zimmerman B, He L, Miles LJ, Huang J, Tiyanont K, McArthur DG, Aster JC, Perrimon N, Loparo JJ, Blacklow SC (2015) Mechanical allostery: evidence for a force requirement in the proteolytic activation of Notch. Dev Cell 33:729–736. https://doi.org/10.1016/j.devcel.2015.05.004
Grevengoed EE, Fox DT, Gates J, Peifer M (2003) Balancing different types of actin polymerization at distinct sites: roles for Abelson kinase and Enabled. J Cell Biol 163:1267–1279. https://doi.org/10.1083/jcb.200307026
Grider MH, Park D, Spencer DM, Shine HD (2009) Lipid raft-targeted Akt promotes axonal branching and growth cone expansion via mTOR and Rac1, respectively. J Neurosci Res 87:3033–3042. https://doi.org/10.1002/jnr.22140
Guarani V, Deflorian G, Franco CA, Krüger M, Phng L-K, Bentley K, Toussaint L, Dequiedt F, Mostoslavsky R, Schmidt MHH, Zimmermann B, Brandes RP, Mione M, Westphal CH, Braun T, Zeiher AM, Gerhardt H, Dimmeler S, Potente M (2011) Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473:234–238. https://doi.org/10.1038/nature09917
Hashimoto-Torii K, Torii M, Sarkisian MR, Bartley CM, Shen J, Radtke F, Gridley T, Šestan N, Rakic P (2008) Interaction between Reelin and Notch signaling regulates neuronal migration in the cerebral cortex. Neuron 60:273–284. https://doi.org/10.1016/j.neuron.2008.09.026
Hattori M, Osterfield M, Flanagan JG (2000) Regulated cleavage of a contact-mediated axon repellent. Science 289:1360–1365. https://doi.org/10.1126/science.289.5483.1360
Hayward P, Brennan K, Sanders P, Balayo T, DasGupta R, Perrimon N, Martinez Arias A (2005) Notch modulates Wnt signalling by associating with Armadillo/beta-catenin and regulating its transcriptional activity. Development 132:1819–1830. https://doi.org/10.1242/dev.01724
He Y, Ren Y, Wu B, Decourt B, Lee AC, Taylor A, Suter DM (2015) Src and cortactin promote lamellipodia protrusion and filopodia formation and stability in growth cones. Mol Biol Cell 26:3229–3244. https://doi.org/10.1091/mbc.E15-03-0142
Hellström M, Phng L-K, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson A-K, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalén M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780. https://doi.org/10.1038/nature05571
Herreman A, Hartmann D, Annaert W, Saftig P, Craessaerts K, Serneels L, Umans L, Schrijvers V, Checler F, Vanderstichele H, Baekelandt V, Dressel R, Cupers P, Huylebroeck D, Zwijsen A, Leuven FV, Strooper BD (1999) Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc Natl Acad Sci U S A 96:11872–11877. https://doi.org/10.1073/pnas.96.21.11872
Hoemann CD, Beaulieu N, Girard L, Rebai N, Jolicoeur P (2000) Two distinct Notch1 mutant alleles are involved in the induction of T-cell leukemia in c-myc transgenic mice. Mol Cell Biol 20:3831–3842. https://doi.org/10.1128/mcb.20.11.3831-3842.2000
Hoffman FM (1991) Drosophila abl and genetic redundancy in signal transduction. Trends Genet 7:351–355
Hong S, Song M-R (2015) Signal transducer and activator of transcription-3 maintains the stemness of radial glia at mid-neurogenesis. J Neurosci 35:1011–1023. https://doi.org/10.1523/JNEUROSCI.2119-14.2015
Howell BW, Herrick TM, Cooper JA (1999) Reelin-induced tryosine phosphorylation of Disabled 1 during neuronal positioning. Genes Dev 13:643–648
Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122. https://doi.org/10.1038/ncb1183
Jin S, Mutvei AP, Chivukula IV, Andersson ER, Ramsköld D, Sandberg R, Lee KL, Kronqvist P, Mamaeva V, Östling P, Mpindi J-P, Kallioniemi O, Screpanti I, Poellinger L, Sahlgren C, Lendahl U (2013) Non-canonical Notch signaling activates IL-6/JAK/STAT signaling in breast tumor cells and is controlled by p53 and IKKα/IKKβ. Oncogene 32:4892–4902. https://doi.org/10.1038/onc.2012.517
Jorissen E, Prox J, Bernreuther C, Weber S, Schwanbeck R, Serneels L, Snellinx A, Craessaerts K, Thathiah A, Tesseur I, Bartsch U, Weskamp G, Blobel CP, Glatzel M, Strooper BD, Saftig P (2010) The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. J Neurosci 30:4833–4844. https://doi.org/10.1523/JNEUROSCI.5221-09.2010
Kannan R, Cox E, Wang L, Kuzina I, Gu Q, Giniger E (2017a) Tyrosine phosphorylation and proteolytic cleavage of Notch are required for non-canonical Notch/Abl signaling in Drosophila axon guidance. Development 145:dev.151548. https://doi.org/10.1242/dev.151548
Kannan R, Song J-K, Karpova T, Clarke A, Shivalkar M, Wang B, Kotlyanskaya L, Kuzina I, Gu Q, Giniger E (2017b) The Abl pathway bifurcates to balance Enabled and Rac signaling in axon patterning in Drosophila. Development 144:487–498. https://doi.org/10.1242/dev.143776
Keeble TR, Halford MM, Seaman C, Kee N, Macheda M, Anderson RB, Stacker SA, Cooper HM (2006) The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum. J Neurosci 26:5840–5848. https://doi.org/10.1523/JNEUROSCI.1175-06.2006
Keshvara L, Benhayon D, Magdaleno S, Curran T (2001) Identification of Reelin-induced sites of tyrosyl phosphorylation on Disabled 1. J Biol Chem 276:16008–16014. https://doi.org/10.1074/jbc.M101422200
Kidd S, Lieber T (2002) Furin cleavage is not a requirement for Drosophila Notch function. Mech Dev 115:41–51. https://doi.org/10.1016/S0925-4773(02)00120-X
Knox S, Ge H, Bimitroff BD, Ren Y, Howe KA, Arsham AM, Easterday MC, Neufeld TP, O´Connor MB, Selleck SB (2007) Mechanisms of TSC-mediated control of synapse assembly and axon guidance. PLoS One 2(4):e375. https://doi.org/10.1371/journal.pone.0000375
Kopan R, Ilagan MXG (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233. https://doi.org/10.1016/j.cell.2009.03.045
Kriegstein AR, Noctor SC (2004) Patterns of neuronal migration in the embryonic cortex. Trends Neurosci 27(7):392–399
Kuzina I, Song JK, Giniger E (2011) How Notch establishes longitudinal axon connections between successive segments of the Drosophila CNS. Development 138:1839–1849. https://doi.org/10.1242/dev.062471
LaFoya B, Munroe JA, Mia MM, Detweiler MA, Crow JJ, Wood T, Roth S, Sharma B, Albig AR (2016) Notch: a multi-functional integrating system of microenvironmental signals. Dev Biol 418:227–241. https://doi.org/10.1016/j.ydbio.2016.08.023
LaFoya B, Munroe JA, Pu X, Albig AR (2018) Src kinase phosphorylates Notch1 to inhibit MAML binding. Sci Rep 8:15515. https://doi.org/10.1038/s41598-018-33920-y
Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594. https://doi.org/10.1242/jcs.051011
Le Gall M, Giniger E (2004) Identification of two binding regions for the Suppressor of Hairless protein within the intracellular domain of Drosophila Notch. J Biol Chem 279(28):29418–29426
Le Gall M, De Mattei C, Giniger E (2008) Molecular separation of two signaling pathways for the receptor, Notch. Dev Biol 313:556–567. https://doi.org/10.1016/j.ydbio.2007.10.030
Lee K-S, Wu Z, Song Y, Mitra SS, Feroze AH, Cheshier SH, Lu B (2013) Roles of PINK1, mTORC2, and mitochondria in preserving brain tumor-forming stem cells in a noncanonical Notch signaling pathway. Genes Dev 27:2642–2647. https://doi.org/10.1101/gad.225169.113
Lee H-J, Kim M-Y, Park H-S (2015) Phosphorylation-dependent regulation of Notch1 signaling: the fulcrum of Notch1 signaling. BMB Rep 48:431–437. https://doi.org/10.5483/BMBRep.2015.48.8.107
Leibinger M, Müller A, Gobrecht P, Diekmann H, Andreadaki A, Fischer D (2013) Interleukin-6 contributes to CNS axon regeneration upon inflammatory stimulation. Cell Death Dis 4:e609. https://doi.org/10.1038/cddis.2013.126
Leonardi J, Fernandez-Valdivia R, Li Y-D, Simcox AA, Jafar-Nejad H (2011) Multiple O-glucosylation sites on Notch function as a buffer against temperature-dependent loss of signaling. Development 138:3569–3578. https://doi.org/10.1242/dev.068361
Lieber T (2002) kuzbanian-mediated cleavage of Drosophila Notch. Genes Dev 16:209–221. https://doi.org/10.1101/gad.942302
Lilja J, Ivaska J (2018) Integrin activity in neuronal connectivity. J Cell Sci 131:jcs212803. https://doi.org/10.1242/jcs.212803
Llimargas M (1999) Role of Notch in the developing trachea. Development 126:10
Lyuksyutova AI, Lu C-C, Milanesio N, King LA, Guo N, Wang Y, Nathans J, Tessier-Lavigne M, Zou Y (2003) Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science 302:1984–1988. https://doi.org/10.1126/science.1089610
Ma Y-C, Shi C, Zhang Y-N, Wang L-G, Liu H, Jia H-T, Zhang Y-X, Sarkar FH, Wang Z-S (2012) The tyrosine kinase c-Src directly mediates growth factor-induced Notch-1 and Furin interaction and Notch-1 activation in pancreatic cancer cells. PLoS One 7:e33414. https://doi.org/10.1371/journal.pone.0033414
Malinverno M, Carta M, Epis R, Marcello E, Verpelli C, Cattabeni F, Sala C, Mulle C, Di Luca M, Gardoni F (2010) Synaptic localization and activity of ADAM10 regulate excitatory synapses through N-cadherin cleavage. J Neurosci 30:16343–16355. https://doi.org/10.1523/JNEUROSCI.1984-10.2010
Meloty-Kapella L, Shergill B, Kuon J, Botvinick E, Weinmaster G (2012) Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins and actin. Dev Cell 22:1299–1312. https://doi.org/10.1016/j.devcel.2012.04.005
Mo J-S, Kim M-Y, Han S-O, Kim I-S, Ann E-J, Lee KS, Seo M-S, Kim J-Y, Lee S-C, Park J-W, Choi E-J, Seong JY, Joe CO, Faessler R, Park H-S (2007) Integrin-linked kinase controls Notch1 signaling by down-regulation of protein stability through Fbw7 ubiquitin ligase. Mol Cell Biol 27:5565–5574. https://doi.org/10.1128/MCB.02372-06
Monnier PP, Sierra A, Macchi P, Deitinghoff L, Andersen JS, Mann M, Flad M, Hornberger MR, Stahl B, Bonhoeffer F, Mueller BK (2002) RGM is a repulsive guidance molecule for retinal axons. Nature 419:392. https://doi.org/10.1038/nature01041
Muñoz-Descalzo S, Sanders PGT, Montagne C, Johnson RI, Balayo T, Arias AM (2010) Wingless modulates the ligand independent traffic of Notch through Dishevelled. Fly (Austin) 4:182–193. https://doi.org/10.4161/fly.4.3.11998
Muñoz-Descalzo S, Tkocz K, Balayo T, Arias AM (2011) Modulation of the ligand-independent traffic of Notch by Axin and Apc contributes to the activation of Armadillo in Drosophila. Development 138:1501–1506. https://doi.org/10.1242/dev.061309
Neuhaus-Follini A, Bashaw GJ (2015) The intracellular domain of the frazzled/DCC receptor is a transcription factor required for commissural axon guidance. Neuron 87:751–763. https://doi.org/10.1016/j.neuron.2015.08.006
Niu S, Yabut O, D’Arcangelo G (2008) The Reelin signaling pathway promotes dendritic spine development in hippocampal neurons. J Neurosci 28:10339–10348. https://doi.org/10.1523/JNEUROSCI.1917-08.2008
O’Donnell M, Chance RK, Bashaw GJ (2009) Axon growth and guidance: receptor regulation and signal transduction. Annu Rev Neurosci 32:383–412. https://doi.org/10.1146/annurev.neuro.051508.135614
Peifer M, Pai L-M, Casey M (1994) Phosphorylation of the Drosophila adherens junction protein Armadillo: roles for wingless signal and Zeste-white 3 kinase. Dev Biol 166:543–556. https://doi.org/10.1006/dbio.1994.1336
Perumalsamy LR, Nagala M, Banerjee P, Sarin A (2009) A hierarchical cascade activated by non-canonical Notch signaling and the mTOR–Rictor complex regulates neglect-induced death in mammalian cells. Cell Death Differ 16:879–889. https://doi.org/10.1038/cdd.2009.20
Polacheck WJ, Kutys ML, Yang J, Eyckmans J, Wu Y, Vasavada H, Hirschi KK, Chen CS (2017) A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature 552(7684):258–262. https://doi.org/10.1038/nature24998
Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283. https://doi.org/10.1242/jcs.00963
Redmond L, Oh S-R, Hicks C, Weinmaster G, Ghosh A (2000) Nuclear Notch1 signaling and the regulation of dendritic development. Nat Neurosci 3:30–40. https://doi.org/10.1038/71104
Robles E (2005) Src-dependent tyrosine phosphorylation at the tips of growth cone filopodia promotes extension. J Neurosci 25:7669–7681. https://doi.org/10.1523/JNEUROSCI.2680-05.2005
Romi E, Gokhman I, Wong E, Antonovsky N, Ludwig A, Sagi I, Saftig P, Tessier-Lavigne M, Yaron A (2014) ADAM metalloproteases promote a developmental switch in responsiveness to the axonal repellant Sema3A. Nat Commun 5:4058. https://doi.org/10.1038/ncomms5058
Salic A, Lee E, Mayer L, Kirschner MW (2000) Control of β-catenin stability: reconstitution of the cytoplasmic steps of the Wnt pathway in Xenopus egg extracts. Mol Cell 5:523–532. https://doi.org/10.1016/S1097-2765(00)80446-3
Sanders PGT, Muñoz-Descalzo S, Balayo T, Wirtz-Peitz F, Hayward P, Arias AM (2009) Ligand-independent traffic of Notch buffers activated Armadillo in Drosophila. PLoS Biol 7:e1000169. https://doi.org/10.1371/journal.pbio.1000169
Seki M, Watanabe A, Enomoto S, Kawamura T, Ito H, Kodama T, Hamakubo T, Aburatani H (2010) Human ROBO1 is cleaved by metalloproteinases and γ-secretase and migrates to the nucleus in cancer cells. FEBS Lett 584:2909–2915. https://doi.org/10.1016/j.febslet.2010.05.009
Shafer B, Onishi K, Lo C, Colakoglu G, Zou Y (2011) Vangl2 promotes Wnt/Planar Cell Polarity-like signaling by antagonizing Dvl1-mediated feedback inhibition in growth cone guidance. Dev Cell 20:177–191. https://doi.org/10.1016/j.devcel.2011.01.002
Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S (1997) Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89:629–639. https://doi.org/10.1016/S0092-8674(00)80244-5
Sibbe M, Förster E, Basak O, Taylor V, Frotscher M (2009) Reelin and Notch1 cooperate in the development of the dentate gyrus. J Neurosci 29:8578–8585. https://doi.org/10.1523/JNEUROSCI.0958-09.2009
Song JK, Kannan R, Merdes G, Singh J, Mlodzik M, Giniger E (2010) Disabled is a bona fide component of the Abl signaling network. Development 137:3719–3727. https://doi.org/10.1242/dev.050948
Spana EP, Doe CQ (1996) Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron 17:21–26. https://doi.org/10.1016/S0896-6273(00)80277-9
Stoeckli ET (2018) Understanding axon guidance: are we nearly there yet? Development 145:dev151415. https://doi.org/10.1242/dev.151415
Struhl G, Greenwald I (1999) Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398:522. https://doi.org/10.1038/19091
Šestan N, Artavanis-Tsakonas S, Rakic P (1999) Contact-dependent inhibition of cortical neurite growth mediated by Notch signaling. Science 286:741–746
Taniguchi Y, Kim S-H, Sisodia SS (2003) Presenilin-dependent “γ-secretase” processing of deleted in colorectal cancer (DCC). J Biol Chem 278:30425–30428. https://doi.org/10.1074/jbc.C300239200
Tomita T, Tanaka S, Morohashi Y, Iwatsubo T (2006) Presenilin-dependent intramembrane cleavage of ephrin-B1. Mol Neurodegener 1:2. https://doi.org/10.1186/1750-1326-1-2
Yoshikawa S, McKinnon RD, Kokel M, Thomas JB (2003) Wnt-mediated axon guidance via the Drosophila derailed receptor. Nature 422:583. https://doi.org/10.1038/nature01522
Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT (1996) The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 10:1443–1454. https://doi.org/10.1101/gad.10.12.1443
Zhang X, Zhu J, Yang G-Y, Wang Q-J, Qian L, Chen Y-M, Chen F, Tao Y, Hu H-S, Wang T, Luo Z-G (2007) Dishevelled promotes axon differentiation by regulating atypical protein kinase C. Nat Cell Biol 9:743–754. https://doi.org/10.1038/ncb1603
Acknowledgments
E.G. was supported by the Basic Neuroscience Program in the Division of Intramural Research of NINDS, NIH (Z01 NS003013). G.H. was supported by institutional funds from Clarkson University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply
About this chapter
Cite this chapter
Hunter, G.L., Giniger, E. (2020). Phosphorylation and Proteolytic Cleavage of Notch in Canonical and Noncanonical Notch Signaling. In: Reichrath, J., Reichrath, S. (eds) Notch Signaling in Embryology and Cancer. Advances in Experimental Medicine and Biology, vol 1227. Springer, Cham. https://doi.org/10.1007/978-3-030-36422-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-36422-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36421-2
Online ISBN: 978-3-030-36422-9
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)