Skip to main content

On Conflict-Free Chromatic Guarding of Simple Polygons

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11949))

Abstract

We study the problem of colouring the vertices of a polygon, such that every viewer can see a unique colour. The goal is to minimize the number of colours used. This is also known as the conflict-free chromatic guarding problem with vertex guards, and is motivated, e.g., by the problem of radio frequency assignment to sensors placed at the polygon vertices. We study the scenario in which viewers can be all points of the polygon (such as a mobile robot which moves in the interior of the polygon). We efficiently solve the related problem of minimizing the number of guards and approximate (up to only an additive error) the number of colours required in the special case of polygons called funnels. As a corollary we sketch an upper bound of \(O(\log ^2 n)\) colours on n-vertex weak visibility polygons which generalizes to all simple polygons.

O. Çağırıcı—Supported by the Czech Science Foundation, project no. 17-00837S.

S. K. Ghosh—Supported by SERB, Government of India through a grant under MATRICS.

P. Hliněný—Supported by the Czech Science Foundation, project no. 17-00837S.

B. Roy—A significant part of the work was done while the author was affiliated to the Faculty of Informatics of Masaryk University.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aardal, K.I., van Hoesel, S.P.M., Koster, A.M.C.A., Mannino, C., Sassano, A.: Models and solution techniques for frequency assignment problems. Ann. Oper. Res. 153, 79–129 (2007)

    Article  MathSciNet  Google Scholar 

  2. Abrahamsen, M., Adamaszek, A., Miltzow, T.: The art gallery problem is \(\exists \)\(\mathbb{R}\)-complete. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 65–73 (2018)

    Google Scholar 

  3. Ashok, P., Fomin, F.V., Kolay, S., Saurabh, S., Zehavi, M.: Exact algorithms for terrain guarding. ACM Trans. Algorithms 14, 1–20 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bärtschi, A., Ghosh, S.K., Mihalák, M., Tschager, T., Widmayer, P.: Improved bounds for the conflict-free chromatic art gallery problem. In: Proceedings of the 30th Annual Symposium on Computational Geometry, pp. 144–153 (2014)

    Google Scholar 

  5. Bärtschi, A., Suri, S.: Conflict-free chromatic art gallery coverage. Algorithmica 68, 265–283 (2014)

    Article  MathSciNet  Google Scholar 

  6. Ben-Moshe, B., Katz, M.J., Mitchell, J.S.B.: A constant-factor approximation algorithm for optimal 1.5D terrain guarding. SIAM J. Comput. 36, 1631–1647 (2007)

    Article  MathSciNet  Google Scholar 

  7. de Berg, M., Cheong, O., Kreveld, M., Overmars, M.: Computational Geometry, Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77974-2

    Book  MATH  Google Scholar 

  8. Bhattacharya, P., Ghosh, S.K., Roy, B.: Approximability of guarding weak visibility polygons. Discrete Appl. Math. 228, 109–129 (2017)

    Article  MathSciNet  Google Scholar 

  9. Biggs, N.: Perfect codes in graphs. J. Comb. Theory Ser. B 15, 289–296 (1973)

    Article  MathSciNet  Google Scholar 

  10. Bonnet, É., Giannopoulos, P.: Orthogonal terrain guarding is NP-complete. In: 34th International Symposium on Computational Geometry, pp. 1–15 (2018)

    Google Scholar 

  11. Bonnet, É., Miltzow, T.: Parameterized hardness of art gallery problems. In: 24th Annual European Symposium on Algorithms, pp. 1–17 (2016)

    Google Scholar 

  12. Bonnet, É., Miltzow, T.: An approximation algorithm for the art gallery problem. In: 33rd International Symposium on Computational Geometry, pp. 1–15 (2017)

    Google Scholar 

  13. Çağırıcı, O., Ghosh, S., Hliněný, P., Roy, B.: On conflict-free chromatic guarding of simple polygons. arXiv:1904.08624, June 2019

  14. Chazelle, B.: Approximation and decomposition of shapes. In: Schwartz, J.T. (ed.) Advances in Robotics 1: Algorithmic and Geometric Aspects of Robotics, pp. 145–185 (1987)

    Google Scholar 

  15. Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory 18, 39–41 (1975)

    Article  MathSciNet  Google Scholar 

  16. Efrat, A., Har-Peled, S.: Guarding galleries and terrains. Inf. Process. Lett. 100, 238–245 (2006)

    Article  MathSciNet  Google Scholar 

  17. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding polygons and terrains. Algorithmica 31, 79–113 (2001)

    Article  MathSciNet  Google Scholar 

  18. Erickson, L.H., LaValle, S.M.: An art gallery approach to ensuring that landmarks are distinguishable. In: Robotics: Science and Systems VII (2011)

    Google Scholar 

  19. Ghosh, S.K.: Approximation algorithms for art gallery problems in polygons. Discrete Appl. Math. 158, 718–722 (2010)

    Article  MathSciNet  Google Scholar 

  20. Guibas, L.J., Motwani, R., Raghavan, P.: The robot localization problem. SIAM J. Comput. 26, 1120–1138 (1997)

    Article  MathSciNet  Google Scholar 

  21. Guy, R.K.: Unsolved Problems in Number Theory. Springer, New York (1994). https://doi.org/10.1007/978-1-4899-3585-4

    Book  MATH  Google Scholar 

  22. Hoffmann, F., Kriegel, K., Suri, S., Verbeek, K., Willert, M.: Tight bounds for conflict-free chromatic guarding of orthogonal art galleries. Comput. Geom. 73, 24–34 (2018)

    Article  MathSciNet  Google Scholar 

  23. Katz, M.J.: A PTAS for vertex guarding weakly-visible polygons - an extended abstract. CoRR abs/1803.02160 (2018)

    Google Scholar 

  24. Katz, M.J., Morgenstern, G.: Guarding orthogonal art galleries with sliding cameras. Int. J. Comput. Geom. Appl. 21, 241–250 (2011)

    Article  MathSciNet  Google Scholar 

  25. King, J., Kirkpatrick, D.G.: Improved approximation for guarding simple galleries from the perimeter. Discrete Comput. Geom. 46, 252–269 (2011)

    Article  MathSciNet  Google Scholar 

  26. Kratochvíl, J., Křivánek, M.: On the computational complexity of codes in graphs. In: Chytil, M.P., Koubek, V., Janiga, L. (eds.) MFCS 1988. LNCS, vol. 324, pp. 396–404. Springer, Heidelberg (1988). https://doi.org/10.1007/BFb0017162

    Chapter  Google Scholar 

  27. Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE Trans. Inf. Theory 32, 276–282 (1986)

    Article  MathSciNet  Google Scholar 

  28. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, Oxford (1987)

    MATH  Google Scholar 

  29. Smorodinsky, S.: Conflict-free coloring and its applications. In: Bárány, I., Böröczky, K.J., Tóth, G.F., Pach, J. (eds.) Geometry — Intuitive, Discrete, and Convex. BSMS, vol. 24, pp. 331–389. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41498-5_12

    Chapter  MATH  Google Scholar 

  30. Suri, S.: On some link distance problems in a simple polygon. IEEE J. Robot. Autom. 6, 108–113 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Hliněný .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Çağırıcı, O., Ghosh, S.K., Hliněný, P., Roy, B. (2019). On Conflict-Free Chromatic Guarding of Simple Polygons. In: Li, Y., Cardei, M., Huang, Y. (eds) Combinatorial Optimization and Applications. COCOA 2019. Lecture Notes in Computer Science(), vol 11949. Springer, Cham. https://doi.org/10.1007/978-3-030-36412-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36412-0_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36411-3

  • Online ISBN: 978-3-030-36412-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics