Skip to main content

Model Based Approach for Online Monitoring of Aluminum Production Process

  • Conference paper
  • First Online:
Light Metals 2020

Abstract

In Hall-Heroult process for aluminium production, estimating the alumina concentration and the anode-cathode distance (ACD) remains a challenge. One of the difficulties arises from the fact that it is not possible to measure those quantities continuously during the pot operation. This article presents a novel approach for an online estimating alumina concentration and ACD in a regular aluminum-reduction pot cell using a Linear Kalman Filter. This is done by using an appropriate dynamical model for the pot, which is obtained by combining the first principle modeling and experimental identification of alumina concentration behavior from irregularly sampled data. Moreover, a dynamical model for the pot resistance is identified as a function of the alumina concentration and ACD data. The proposed approach is validated on an industrial platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Grjotheim, Aluminium Electrolysis: Fundamentals of the Hall-Héroult Process. Aluminium-Verlag, 1982.

    Google Scholar 

  2. K. Grjotheim and B. J. Welch, Aluminium Smelter Technology: A Pure and Applied Approach. Aluminium-Verlag; 2nd edition, 1980.

    Google Scholar 

  3. S. R. Jakobsen, K. Hestetun, M. Hovd, and I. Solberg, “Estimating alumina concentration distribution in aluminium electrolysis cells,” IFAC Proceedings Volumes, vol. 34, no. 18, pp. 303–308, 2001.

    Article  Google Scholar 

  4. Y. Yao and J. Bao, “State and parameter estimation in Hall-Héroult cells using iterated extended Kalman filter,” IFAC-PapersOnLine, vol. 51, no. 21, pp. 36–41, 2018.

    Article  Google Scholar 

  5. J. T. Keniry, G. C. Barber, M. P. Taylor, and B. J. Welch, “Digital processing of anode current signals: an opportunity for improved cell diagnosis and control,” Light Metals, pp. 1225–1232, 2001.

    Google Scholar 

  6. Y. Yao, C.-Y. Cheung, J. Bao, M. Skyllas-Kazacos, B. J. Welch, and S. Akhmetov, “Estimation of spatial alumina concentration in an aluminum reduction cell using a multilevel state observer,” AIChE Journal, vol. 63, no. 7, pp. 2806–2818, 2017.

    Article  CAS  Google Scholar 

  7. G. P. Bearne, “The development of aluminum reduction cell process control,” JOM, vol. 51, no. 5, pp. 16–22, 1999.

    Article  CAS  Google Scholar 

  8. P. Homsi, J.-M. Peyneau, and M. Reverdy, “Overview of process control in reduction cells and potlines,” in Essential Readings in Light Metals, pp. 739–746, Springer, 2016.

    Google Scholar 

  9. Y. Yao, C.-Y. Cheung, J. Bao, and M. Skyllas-Kazacos, “Monitoring local alumina dissolution in aluminum reduction cells using state estimation,” in Light Metals 2015, pp. 577–581, Springer, 2015.

    Google Scholar 

  10. W. Haupin and E. J. Seger, “Aiming for zero anode effects,” in Essential Readings in Light Metals, pp. 767–773, Springer, 2016.

    Google Scholar 

  11. S. Kolås, B. Foss, and T. S. Schei, “State estimation is the real challenge in NMPC,” in International workshop on assessment and future directions of nonlinear model predictive control, Pavia, Italy, 2008.

    Google Scholar 

  12. K. Hestetun and M. Hovd, “Detecting abnormal feed rate in aluminium electrolysis using extended kalman filter,” IFAC Proceedings Volumes, vol. 38, no. 1, pp. 85–90, 2005.

    Article  Google Scholar 

  13. P. Biedler, Modeling of an aluminum reduction cell for the development of a state estimator. PhD thesis, West Virginia University, 2003.

    Google Scholar 

  14. W. Haupin, “Interpreting the components of cell voltage,” in Essential Readings in Light Metals, pp. 153–159, Springer, 2016.

    Google Scholar 

  15. R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

    Article  Google Scholar 

  16. D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons, 2006.

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge project PIANO funded by the French Fonds Unique Interministériel (FUI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas José da Silva Moreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

da Silva Moreira, L.J., Besançon, G., Ferrante, F., Fiacchini, M., Roustan, H. (2020). Model Based Approach for Online Monitoring of Aluminum Production Process. In: Tomsett, A. (eds) Light Metals 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36408-3_78

Download citation

Publish with us

Policies and ethics