Skip to main content

Biological Underpinning of Behavioral Addictions and Management Implications

  • Chapter
  • First Online:

Abstract

Neurobiological and clinical data indicate that maladaptive engagement in certain behaviors warrants consideration as “behavioral” or non-substance addictions. This chapter reviews existing neurobiological and genetic/family history evidence for behavioral addictions involving gambling, internet use, video-gaming, sex, eating, and shopping. At a neurochemical level, behavioral addictions may involve dysregulation of serotoninergic, dopaminergic, noradrenergic, and opioidergic systems. At a neurocircuitry level, findings suggest dysfunction in subcortical and frontal areas; disruption in these regions and related circuits could lead to disadvantageous decision making, impaired inhibition, and increased cue-induced craving. While a genetic understanding is at an early stage, genetics/family-history data support heritability for behavioral addictions and suggest genetic overlap with other psychopathologies. As this represents an emerging area of research, data remain sparse in multiple domains. An improved understanding of behavioral addictions will help in establishing appropriate nomenclature and enhance the ability to recognize, prevent, and treat these disorders more effectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alsiö J, Olszewski PK, Norbäck AH, Gunnarsson ZEA, Levine AS, Pickering C, Schiöth HB. Dopamine D1 receptor gene expression decreases in the nucleus accumbens upon long-term exposure to palatable food and differs depending on diet-induced obesity phenotype in rats. Neuroscience. 2010;171(3):779–87.

    Google Scholar 

  2. American Psychiatric Association. Diagnostic and statistical manual of mental disorders, fifth edition (DSM-5). Washington, DC: American Psychiatric Press, Inc.; 2013.

    Google Scholar 

  3. Avena NM, Bocarsly ME, Hoebel BG, Gold MS. Overlaps in the nosology of substance abuse and overeating: the translational implications of “food addiction”. Curr Drug Abuse Rev. 2011;4(3):133–9.

    Google Scholar 

  4. Avena NM, Gearhardt AN, Gold MS, Wang G-J, Potenza MN. Tossing the baby out with the bathwater after a brief rinse? The potential downside of dismissing food addiction based on limited data. Nat Rev Neurosci. 2012;13(7):514.

    CAS  Google Scholar 

  5. Balodis IM, Grilo CM, Kober H, Worhunsky PD, White MA, Stevens MC, et al. A pilot study linking reduced fronto–striatal recruitment during reward processing to persistent bingeing following treatment for binge-eating disorder. Int J Eat Disord. 2014;47(4):376–84.

    Google Scholar 

  6. Balodis IM, Kober H, Worhunsky PD, Stevens MC, Pearlson GD, Potenza MN. Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry. 2012;71(8):749–57. https://doi.org/10.1016/j.biopsych.2012.01.006.

    Article  Google Scholar 

  7. Balodis IM, Lacadie CM, Potenza MN. A preliminary study of the neural correlates of the intensities of self-reported gambling urges and emotions in men with pathological gambling. J Gambl Stud. 2012;28(3):493–513. https://doi.org/10.1007/s10899-011-9259-8.

    Article  Google Scholar 

  8. Balodis IM, Linnet J, Arshad F, Worhunsky PD, Stevens MC, Pearlson GD, Potenza MN. Relating neural processing of reward and loss prospect to risky decision-making in individuals with and without gambling disorder. Int Gambl Stud. 2018;18(2):269–85. https://doi.org/10.1080/14459795.2018.1469658.

    Article  Google Scholar 

  9. Balodis IM, Molina ND, Kober H, Worhunsky PD, White MA, Sinha R, et al. Divergent neural substrates of inhibitory control in binge eating disorder relative to other manifestations of obesity. Obesity. 2013;21(2):367–77. https://doi.org/10.1002/oby.20068.

    Article  Google Scholar 

  10. Black DW. A review of compulsive buying disorder. World Psychiatry. 2007;6(1):14–8.

    Google Scholar 

  11. Bocarsly ME, Berner LA, Hoebel BG, Avena NM. Rats that binge eat fat-rich food do not show somatic signs or anxiety associated with opiate-like withdrawal: implications for nutrient-specific food addiction behaviors. Physiol Behav. 2011;104(5):865–72. https://doi.org/10.1016/j.physbeh.2011.05.018.

    Article  CAS  Google Scholar 

  12. Boileau I, Payer D, Chugani B, Lobo D, Behzadi A, Rusjan P, et al. The D2/3 dopamine receptor in pathological gambling: a positron emission tomography study with [11C]-(+)-propyl-hexahydro-naphtho-oxazin and [11C]raclopride. Addiction. Early Online. 2013. https://doi.org/10.1111/add.12066.

  13. Carnes PJ. The obsessive shadow: profiles in sexual addiction. Prof Couns. 1998;13(1):15–7, 40-41

    Google Scholar 

  14. Clark L, Stokes PR, Wu K, Michalczuk R, Benecke A, Watson BJ, et al. Striatal dopamine D2/D3 receptor binding in pathological gambling is correlated with mood-related impulsivity. NeuroImage. 2012;63(1):40–6. https://doi.org/10.1016/j.neuroimage.2012.06.067.

    Article  CAS  Google Scholar 

  15. de Greck M, Enzi B, Prösch U, Gantman A, Tempelmann C, Northoff G. Decreased neuronal activity in reward circuitry of pathological gamblers during processing of personal relevant stimuli. Hum Brain Mapp. 2010;31(11):1802–12. https://doi.org/10.1002/hbm.20981.

    Article  Google Scholar 

  16. Dong G, Li H, Wang L, Potenza M. Cognitive control and reward/loss processing in Internet gaming disorder: results from a comparison with recreational Internet game-users. Eur Psychiatry. 2017;44:30–8.

    CAS  Google Scholar 

  17. Dong G, Lin X, Potenza MN. Decreased functional connectivity in an executive control network is related to impaired executive function in internet gaming disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2015;57:76–85.

    Google Scholar 

  18. Dong G, Liu X, Zheng H, Du X, Potenza MN. Brain response features during forced break could predict subsequent recovery in internet gaming disorder: a longitudinal study. J Psychiatr Res. 2019;113:17–26.

    Google Scholar 

  19. Dong G, Wang L, Du X, Potenza MN. Gender-related differences in neural responses to gaming cues before and after gaming: implications for gender-specific vulnerabilities to Internet gaming disorder. Soc Cogn Affect Neurosci. 2018;13(11):1203–14.

    Google Scholar 

  20. Dong G, Wang M, Liu X, Liang Q, Du X, Potenza MN. Cue-elicited craving–related lentiform activation during gaming deprivation is associated with the emergence of Internet gaming disorder. Addict Biol. 2020;25(1):e12713.

    Google Scholar 

  21. Dong G, Wang Z, Wang Y, Du X, Potenza MN. Gender-related functional connectivity and craving during gaming and immediate abstinence during a mandatory break: implications for development and progression of internet gaming disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2019;88:1–10.

    Google Scholar 

  22. Dong G, Wu L, Wang Z, Wang Y, Du X, Potenza MN. Diffusion-weighted MRI measures suggest increased white-matter integrity in Internet gaming disorder: evidence from the comparison with recreational Internet game users. Addict Behav. 2018;81:32–8.

    Google Scholar 

  23. Feldstein Ewing SW, Claus ED, Hudson KA, Filbey FM, Yakes Jimenez E, Lisdahl KM, Kong AS. Overweight adolescents’ brain response to sweetened beverages mirrors addiction pathways. Brain Imaging Behav. 2017;11(4):925–35. https://doi.org/10.1007/s11682-016-9564-z.

    Article  Google Scholar 

  24. Gearhardt AN, Yokum S, Orr PT, Stice E, Corbin WR, Brownell KD. Neural correlates of food addiction. Arch Gen Psychiatry. 2011;68(8):808–16. https://doi.org/10.1001/archgenpsychiatry.2011.32.

    Article  Google Scholar 

  25. Gola M, Potenza MN. Paroxetine treatment of problematic pornography use: a case series. J Behav Addict. 2016;5(3):529–32.

    Google Scholar 

  26. Gola M, Wordecha M, Sescousse G, Lew-Starowicz M, Kossowski B, Wypych M, et al. Can pornography be addictive? An fMRI study of men seeking treatment for problematic pornography use. Neuropsychopharmacology. 2017;42(10):2021.

    Google Scholar 

  27. Han DH, Lee YS, Yang KC, Kim EY, Lyoo IK, Renshaw PF. Dopamine genes and reward dependence in adolescents with excessive internet video game play. J Addict Med. 2007;1(3):133–8.

    CAS  Google Scholar 

  28. Hutson PH, Balodis IM, Potenza MN. Binge-eating disorder: clinical and therapeutic advances. Pharmacol Ther. 2018;182:15–27.

    CAS  Google Scholar 

  29. Jastreboff AM, Sinha R, Lacadie C, Small DM, Sherwin RS, Potenza MN. Neural correlates of stress- and food- cue-induced food craving in obesity: association with insulin levels. Diabetes Care. 2013;36(2):394–402. https://doi.org/10.2337/dc12-1112.

    Article  Google Scholar 

  30. Joutsa J, Johansson J, Niemelä S, Ollikainen A, Hirvonen MM, Piepponen P, et al. Mesolimbic dopamine release is linked to symptom severity in pathological gambling. NeuroImage. 2012;60(4):1992–9. https://doi.org/10.1016/j.neuroimage.2012.02.006.

    Article  CAS  Google Scholar 

  31. Kafka MP. Hypersexual disorder: a proposed diagnosis for DSM-V. Arch Sex Behav. 2010;39:377–400.

    Google Scholar 

  32. Kessler RM, Hutson PH, Herman BK, Potenza MN. The neurobiological basis of binge-eating disorder. Neurosci Biobehav Rev. 2016;63:223–38.

    Google Scholar 

  33. Kim SH, Baik S-H, Park CS, Kim SJ, Choi SW, Kim SE. Reduced striatal dopamine D2 receptors in people with Internet addiction. Neuroreport. 2011;22(8):407–11.

    CAS  Google Scholar 

  34. Ko C-H, Liu G-C, Hsiao S, Yen J-Y, Yang M-J, Lin W-C, et al. Brain activities associated with gaming urge of online gaming addiction. J Psychiatr Res. 2009;43(7):739–47. https://doi.org/10.1016/j.jpsychires.2008.09.012.

    Article  Google Scholar 

  35. Kor A, Fogel Y, Reid C, Potenza MN. Should hypersexual disorder be classified as an addiction? Sex Addict Compuls. 2013;20(1–2).

    Google Scholar 

  36. Koran LM, Aboujaoude EN, Solvason B, Gamel NN, Smith EH. Escitalopram for compulsive buying disorder: a double-blind discontinuation study. J Clin Psychopharmacol. 2007;27(2):225–7. https://doi.org/10.1097/01.jcp.0000264975.79367.f4.

    Article  Google Scholar 

  37. Kowalewska E, Grubbs JB, Potenza MN, Gola M, Draps M, Kraus SW. Neurocognitive mechanisms in compulsive sexual behavior disorder. Curr Sex Health Rep. 2018;10(4):255–64.

    Google Scholar 

  38. Kraus SW, Meshberg-Cohen S, Martino S, Quinones LJ, Potenza MN. Treatment of compulsive pornography use with naltrexone: a case report. Am J Psychiatr. 2015;172(12):1260–1.

    Google Scholar 

  39. Kreek MJ, Nielsen DA, Butelman ER, LaForge KS. Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nat Neurosci. 2005;8(11):1450–7.

    CAS  Google Scholar 

  40. Kühn AB, Feis D-L, Schilbach L, Kracht L, Hess ME, Mauer J, et al. FTO gene variant modulates the neural correlates of visual food perception. NeuroImage. 2016;128:21–31. https://doi.org/10.1016/j.neuroimage.2015.12.049.

    Article  CAS  Google Scholar 

  41. Kühn S, Gallinat J. Brain structure and functional connectivity associated with pornography consumption: the brain on PornThe brain and pornography ConsumptionThe brain and pornography consumption. JAMA Psychiat. 2014;71(7):827–34. https://doi.org/10.1001/jamapsychiatry.2014.93.

    Article  Google Scholar 

  42. Kühn S, Romanowski A, Schilling C, Lorenz R, Morsen C, Seiferth N, et al. The neural basis of video gaming. Transl Psychiatry. 2011;1:e53. https://doi.org/10.1038/tp.2011.53.

    Article  Google Scholar 

  43. Lee YS, Han D, Yang KC, Daniels MA, Na C, Kee BS, Renshaw PF. Depression like characteristics of 5HTTLPR polymorphism and temperament in excessive internet users. J Affect Disord. 2008;1-2:165–9.

    Google Scholar 

  44. Leombruni P, Piero A, Lavagnino L, Brustolin A, Campisi S, Fassino S. A randomized, double-blind trial comparing sertraline and fluoxetine 6-month treatment in obese patients with Binge Eating Disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32(6):1599–605. https://doi.org/10.1016/j.pnpbp.2008.06.005.

    Article  CAS  Google Scholar 

  45. Leyton M, Vezina P. Striatal ups and downs: their roles in vulnerability to addictions in humans. Neurosci Biobehav Rev. 2013;37(9 Pt A):1999–2014. https://doi.org/10.1016/j.neubiorev.2013.01.018.

    Article  Google Scholar 

  46. Li Y, Wang Z, Boileau I, Dreher J-C, Gelskov S, Genauck A, et al. Altered orbitofrontal sulcogyral patterns in gambling disorder: a multicenter study. Transl Psychiatry. 2019;186(9). https://doi.org/10.1038/s41398-019-0520-8.

  47. Linnet J, Møller A, Peterson E, Gjedde A, Doudet D. Dopamine release in ventral striatum during Iowa gambling task performance is associated with increased excitement levels in pathological gambling. Addiction. 2011;106(2):383–90. https://doi.org/10.1111/j.1360-0443.2010.03126.x.

    Article  Google Scholar 

  48. Lorains FK, Cowlishaw S, Thomas SA. Prevalence of comorbid disorders in problem and pathological gambling: systematic review and meta-analysis of population surveys. Addiction. 2011;106(3):490–8. https://doi.org/10.1111/j.1360-0443.2010.03300.x.

    Article  Google Scholar 

  49. Luijten M, Schellekens AF, Kuhn S, Machielse MW, Sescousse G. Disruption of reward processing in addiction : an image-based meta-analysis of functional magnetic resonance imaging studies. JAMA Psychiat. 2017;74(4):387–98. https://doi.org/10.1001/jamapsychiatry.2016.3084.

    Article  Google Scholar 

  50. Majuri J, Joutsa J, Johansson J, Voon V, Alakurtti K, Parkkola R, et al. Dopamine and opioid neurotransmission in behavioral addictions: a comparative PET study in pathological gambling and binge eating. Neuropsychopharmacology. 2017;42(5):1169–77. https://doi.org/10.1038/npp.2016.265.

    Article  CAS  Google Scholar 

  51. McElroy SL, Guerdjikova AI, Mori N, Munoz MR, Keck PE. Overview of the treatment of binge eating disorder. CNS Spectr. 2015;20(6):546–56.

    Google Scholar 

  52. Miner MH, Raymond N, Mueller BA, Lloyd M, Lim KO. Preliminary investigation of the impulsive and neuroanatomical characteristics of compulsive sexual behavior. Psychiatry Res Neuroimaging. 2009;174(2):146–51. https://doi.org/10.1016/j.pscychresns.2009.04.008.

    Article  Google Scholar 

  53. Müller A, Brand M, Claes L, Demetrovics Z, de Zwaan M, Fernández-Aranda F, et al. Buying-shopping disorder—is there enough evidence to support its inclusion in ICD-11? CNS Spectr. 2019:1–6.

    Google Scholar 

  54. Noori HR, Cosa Linan A, Spanagel R. Largely overlapping neuronal substrates of reactivity to drug, gambling, food and sexual cues: a comprehensive meta-analysis. Eur Neuropsychopharmacol. 2016;26(9):1419–30. https://doi.org/10.1016/j.euroneuro.2016.06.013.

    Article  CAS  Google Scholar 

  55. Nutt DJ, Lingford-Hughes A, Erritzoe D, Stokes PR. The dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci. 2015;16(5):305.

    CAS  Google Scholar 

  56. Potenza MN. The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philos Trans R Soc B. 2008;363(1507):3181–9.

    Google Scholar 

  57. Potenza MN. Searching for replicable dopamine-related findings in gambling disorder. Biol Psychiatry. 2018;83(12):984.

    Google Scholar 

  58. Potenza MN, Balodis IM, Derevensky J, Grant JE, Petry NM, Verdejo-Garcia A, Yip SW. Gambling disorder. Nat Rev Dis Primers. 2019;5(1):51.

    Google Scholar 

  59. Power Y, Goodyear B, Crockford D. Neural correlates of pathological gamblers preference for immediate rewards during the Iowa gambling task: an fMRI study. J Gambl Stud. 2011:1–14. https://doi.org/10.1007/s10899-011-9278-5.

  60. Reas DL, Grilo CM. Review and meta-analysis of pharmacotherapy for binge-eating disorder. Obesity (Silver Spring). 2008;16(9):2024–38. https://doi.org/10.1038/oby.2008.333.

    Article  CAS  Google Scholar 

  61. Shaffer HJ, LaPlante DA, LaBrie R, Kidman RC, Donato AN, Stanton MV. Toward a syndrome model of addiction: multiple expressions, common etiology. Harv Rev Psychiatry. 2004;12:367–74.

    Google Scholar 

  62. Stark R, Klucken T, Potenza MN, Brand M, Strahler J. A current understanding of the behavioral neuroscience of compulsive sexual behavior disorder and problematic pornography use. Curr Behav Neurosci Rep. 2018;5(4):218–31.

    Google Scholar 

  63. Tian M, Chen Q, Zhang Y, Du F, Hou H, Chao F, Zhang H. PET imaging reveals brain functional changes in internet gaming disorder. Eur J Nucl Med Mol Imaging. 2014;41(7):1388–97. https://doi.org/10.1007/s00259-014-2708-8.

    Article  Google Scholar 

  64. Vaccaro AG, Potenza MN. Diagnostic and classification considerations regarding gaming disorder: neurocognitive and neurobiological features. Front Psych. 2019;10:405.

    Google Scholar 

  65. van Holst RJ, Chase HW, Clark L. Striatal connectivity changes following gambling wins and near-misses: associations with gambling severity. Neuroimage Clin. 2014;5:232–9. https://doi.org/10.1016/j.nicl.2014.06.008.

    Article  Google Scholar 

  66. Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M, et al. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry. 2001;158(12):2015–21.

    CAS  Google Scholar 

  67. Volkow ND, Wise RA, Baler R. The dopamine motive system: implications for drug and food addiction. Nat Rev Neurosci. 2017;18(12):741–52. https://doi.org/10.1038/nrn.2017.130.

    Article  CAS  Google Scholar 

  68. Voon V, Mole TB, Banca P, Porter L, Morris L, Mitchell S, et al. Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours. PLoS One. 2014;9(7):e102419.

    Google Scholar 

  69. Vucetic Z, Kimmel J, Totoki K, Hollenbeck E, Reyes TM. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology. 2010;151(10):4756–64. https://doi.org/10.1210/en.2010-0505.

    Article  CAS  Google Scholar 

  70. World Health Organization. ICD-11. 2019. Retrieved from https://icd.who.int/browse11/l-m/en.

  71. Yao Y-W, Liu L, Ma S-S, Shi X-H, Zhou N, Zhang J-T, Potenza MN. Functional and structural neural alterations in Internet gaming disorder: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2017;83:313–24.

    Google Scholar 

  72. Yau Y, Leeman RF, Potenza MN. Biological underpinnings of behavioral addictions & management implications. In: el-Guebaly N, Galanter M, Carra G, editors. The textbook of addiction treatment international perspective. New York: Springer; 2015.

    Google Scholar 

  73. Yip SW, Morie KP, Xu J, Constable RT, Malison RT, Carroll KM, Potenza MN. Shared microstructural features of behavioral and substance addictions revealed in areas of crossing fibers. Biol Psychiatry: Cogn Neurosci Neuroimag. 2017;2(2):188–95.

    Google Scholar 

  74. Yip SW, Worhunsky PD, Xu J, Morie KP, Constable RT, Malison RT, et al. Gray-matter relationships to diagnostic and transdiagnostic features of drug and behavioral addictions. Addict Biol. 2018;23(1):394–402. https://doi.org/10.1111/adb.12492.

    Article  CAS  Google Scholar 

  75. Young KS. Internet addiction: symptoms, evaluation and treatment. In: VandeCreek L, Jackson T, editors. Innovations in clinical practice: a source book, vol. 17. Sarasota: Professional Resource Press; 1999. p. 19–31.

    Google Scholar 

  76. Yuan K, Qin W, Wang G, Zeng F, Zhao L, Yang X, et al. Microstructure abnormalities in adolescents with internet addiction disorder. PLoS One. 2011;6(6):e20708. https://doi.org/10.1371/journal.pone.0020708.

    Article  CAS  Google Scholar 

  77. Yuan K, Yu D, Cai C, Feng D, Li Y, Bi Y, et al. Frontostriatal circuits, resting state functional connectivity and cognitive control in internet gaming disorder. Addict Biol. 2017;22(3):813–22. https://doi.org/10.1111/adb.12348.

    Article  Google Scholar 

  78. Zhang J-T, Yao Y-W, Potenza MN, Xia C-C, Lan J, Liu L, et al. Altered resting-state neural activity and changes following a craving behavioral intervention for Internet gaming disorder. Sci Rep. 2016;6:28109.

    CAS  Google Scholar 

  79. Zhang J-T, Yao Y-W, Potenza MN, Xia C-C, Lan J, Liu L, et al. Effects of craving behavioral intervention on neural substrates of cue-induced craving in Internet gaming disorder. NeuroIm Clin. 2016;12:591–9.

    Google Scholar 

  80. Ziauddeen H, Farooqi IS, Fletcher PC. Obesity and the brain: how convincing is the addiction model? Nat Rev Neurosci. 2012;13(4):279–86.

    CAS  Google Scholar 

  81. Zois E, Kiefer F, Lemenager T, Vollstadt-Klein S, Mann K, Fauth-Buhler M. Frontal cortex gray matter volume alterations in pathological gambling occur independently from substance use disorder. Addict Biol. 2017;22(3):864–72. https://doi.org/10.1111/adb.12368.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc N. Potenza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yau, Y.H.C., Leeman, R.F., Potenza, M.N. (2021). Biological Underpinning of Behavioral Addictions and Management Implications. In: el-Guebaly, N., Carrà, G., Galanter, M., Baldacchino, A.M. (eds) Textbook of Addiction Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-36391-8_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36391-8_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36390-1

  • Online ISBN: 978-3-030-36391-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics