Skip to main content

Addiction to Caffeine and Other Xanthines

Abstract

Xanthine (3,7-dihydro-purine-2,6-dione) is a purine base that can naturally be found in human body tissues and fluids as well as in plants and other organisms. Methylated xanthines (methylxanthines) are phosphodiesterase inhibitors and adenosine receptor antagonists. Methylxanthines have thus different effects: reduce inflammation and immunity, reduce sleepiness, and increase alertness, but also stimulate the heart rate and contraction and dilate the bronchi. The most well-known methylxanthines are caffeine, methylbromine, and theophylline. Large observational studies suggest that caffeine may have long-term health benefits. Coffee and caffeine withdrawal symptoms exist and are often not recognized, especially in treatment settings, where caffeine withdrawal can be confounded with other symptoms. Caffeine intoxication and withdrawal are recognized clinical entities, but caffeine dependence is currently not. Caffeine withdrawal symptoms occur in half of regular coffee drinkers, even at moderate caffeine intake. The most common symptoms are headache, fatigue, and difficulty to concentrate. Health professionals and patients should be better informed about these symptoms and the risk of occurrence of caffeine withdrawal. There is little research on treatments for clinical problems associated with xanthine use or abuse.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-36391-8_16
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-36391-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 16.1

References

  1. Armstrong LE, Pumerantz AC, Roti MW, Judelson DA, Watson G, Dias JC, Sokmen B, Casa DJ, Maresh CM, Lieberman H, Kellogg M. Fluid, electrolyte, and renal indices of hydration during 11 days of controlled caffeine consumption. Int J Sport Nutr Exerc Metab. 2005;15:252.

    CrossRef  CAS  Google Scholar 

  2. Beach CA, Mays DC, Guiler RC, Jacober CH, Gerber N. Clinical inhibition of elimination of caffeine by disulfiram in normal subjects and recovering alcoholics. Pharmacol Ther. 1986;39:265–70.

    CrossRef  CAS  Google Scholar 

  3. Bigal ME, Sheftell FD, Rapoport AM, Tepper SJ, Lipton RB. Chronic daily headache: identification of factors associated with induction and transformation. Headache. 2002;42:575–81.

    CrossRef  Google Scholar 

  4. Bird ET, Parker BD, Kim HS, Coffield KS. Caffeine ingestion and lower urinary tract symptoms in healthy volunteers. Neurourol Urodyn. 2005;24:611.

    CrossRef  CAS  Google Scholar 

  5. Bordeaux B, Lieberman HR. Benefits and risks of caffeine and caffeinated beverages. 2019. UpToDate. http://​www.​uptodate.​com. Accessed 7 July 2019.

  6. Brown CR, Jacob P 3rd, Wilson M, Benowitz NL. Changes in rate and pattern of caffeine metabolism after cigarette abstinence. Clin Pharmacol Ther. 1988;43(5):488–91.

    CrossRef  CAS  Google Scholar 

  7. Burke LM. Caffeine and sports performance. Appl Physiol Nutr Metab 2008; 33:1319.

    Google Scholar 

  8. Choi HK, Willett W, Curhan G. Coffee consumption and risk of incident gout in men: a prospective study. Arthritis Rheum. 2007;56:2049.

    Google Scholar 

  9. Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA. 2006;295(10):1135–41.

    CrossRef  CAS  Google Scholar 

  10. Cornelis MC. The impact of caffeine and coffee on human health. Nutrients. 2019;11(2):416.

    CrossRef  CAS  Google Scholar 

  11. Del Coso J, Muñoz-Fernández VE, Muñoz G, Fernández-Elías VE, Ortega JF, Hamouti N, Barbero JC, Muñoz-Guerra J. Effects of a caffeine-containing energy drink on simulated soccer performance. PLoS One. 2012;7(2):e31380.

    CrossRef  CAS  Google Scholar 

  12. Ehlers A, Marakis G, Lampen A, Hirsch-Ernst KI. Risk assessment of energy drinks with focus on cardiovascular parameters and energy drink consumption in Europe. Food Chem Toxicol. 2019;130:109–21.

    CrossRef  CAS  Google Scholar 

  13. Favrod-Coune F, Broers B. The health effect of psychostimulants: a literature review. Pharmaceuticals. 2010;3:2333–61.

    CrossRef  CAS  Google Scholar 

  14. Freedman ND, Park Y, Abnet CC, Hollenbeck AR, Sinha R. Association of coffee drinking with total and cause-specific mortality. N Engl J Med. 2012;366(20):1891–904.

    CrossRef  CAS  Google Scholar 

  15. Goldstein J, Silberstein SD, Saper JR, Ryan RE Jr, Lipton RB. Acetaminophen, aspirin, and caffeine in combination versus ibuprofen for acute migraine: results from a multicenter, double-blind, randomized, parallel-group, single-dose, placebo-controlled study. Headache. 2006;46:444–53.

    CrossRef  Google Scholar 

  16. Greden JF, Walters A. Caffeine. In: Lowinson JH, et al., editors. Substance abuse, a comprehensive textbook. 2nd ed. Baltimore: Williams & Wilkins; 1992. p. 356–70.

    Google Scholar 

  17. Hackett PH. Caffeine at high altitude: java at base-cAMP. High Alt Med Biol. 2010;11(1):13–7.

    CrossRef  CAS  Google Scholar 

  18. Herndon M. FDA warning letters issued to four makers of caffeinated alcoholic beverages. This beverages present a public health concern. U.S. Food and Drugs Administration. 2010. http://​www.​fda.​gov/​NewsEvents/​Newsroom/​PressAnnouncemen​ts/​ucm234109.​htm. Accessed 2 May 2013.

  19. Holmgren P, Nordén-Pettersson L, Ahlner J. Caffeine fatalities—four case reports. Forensic Sci Int. 2004;139(1):71–73.

    Google Scholar 

  20. ICD-10 classification of mental and behavioural disorders: diagnostic criteria for research. WHO http://​www.​who.​int/​substance_​abuse/​terminology/​icd_​10/​en/​index.​html. Accessed 7 July 2019.

  21. Juliano LM, Griffiths RR. A critical review of caffeine withdrawal: empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology (Berl) 2004;176:1.

    Google Scholar 

  22. Kawachi I, Willett WC, Colditz GA, Stampfer MJ, Speizer FE. A prospective study of coffee drinking and suicide in women. Arch Intern Med. 1996;156(5):521–5.

    CrossRef  CAS  Google Scholar 

  23. Kendler KS, Myers J, O Gardner C. Caffeine intake, toxicity and dependence and lifetime risk for psychiatric and substance use disorders: an epidemiologic and co-twin control analysis. Psychol Med. 2006;36:1717.

    CrossRef  Google Scholar 

  24. Ker K, Edwards PJ, Felix LM, Blackhall K, Roberts I. Caffeine for the prevention of injuries and errors in shift workers. Cochrane Database Syst Rev. 2010;(5):CD008508.

    Google Scholar 

  25. Kim Y, Je Y, Giovannucci E. Coffee consumption and all-cause and cause-specific mortality: a meta-analysis by potential modifiers. Eur J Epidemiol. 2019;34:731. https://doi.org/10.1007/s10654-019-00524-3. [Epub ahead of print].

    CrossRef  Google Scholar 

  26. Klastky AL, Morton C, Udaltsova N, Friedman GD. Coffee, cirrhosis and transaminases enzymes. Arch Int Med. 2006;166:1190–5.

    CrossRef  Google Scholar 

  27. Knutti R, Rothweiler H, Schlatter C. The effect of pregnancy on the pharmacokinetics of caffeine. Arch Toxicol. 1982;5:187–92.

    CrossRef  CAS  Google Scholar 

  28. Korpelainen R, Korpelainen J, Heikkinen J, et al. Lifestyle factors are associated with osteoporosis in lean women but not in normal and overweight women: a population-based cohort study of 1222 women. Osteoporos Int. 2003;14:34.

    Google Scholar 

  29. Larsson CL, Orsini N. Coffee consumption and risk of dementia and Alzheimer’s disease: a dose-response meta-analysis of prospective studies. Nutrients. 2018;10(10):1501. https://doi.org/10.3390/nu10101501.

    CrossRef  Google Scholar 

  30. Lopez-Garcia E, van Dam RM, Li TY, Rodriguez-Artalejo F, Hu FB. The relationship of coffee consumption with mortality. Ann Intern Med. 2008;148:904–14.

    CrossRef  Google Scholar 

  31. MacKenzie T, Comi R, Sluss P, Keisari R, Manwar S, Kim J, Larson R, Baron JA. Metabolic and hormonal effects of caffeine: randomized, double-blind, placebo-controlled crossover trial. Metabolism. 2007;56:1694–8.

    CrossRef  CAS  Google Scholar 

  32. McCarthy DM, Mycyk MB, DesLauriers CA. Hospitalization for caffeine abuse is associated with abuse of other pharmaceutical products. Am J Emerg Med. 2008;26:799.

    Google Scholar 

  33. Park S, Jang JS, Hong SM. Long-term consumption of caffeine improves glucose homeostasis by enhancing insulinotropic action through islet insulin/insulin-like growth factor 1 signaling in diabetic rats. Metabolism. 2007;56(5):599–607.

    CrossRef  CAS  Google Scholar 

  34. Peters JM. Factors affecting caffeine toxicity: a review of the literature. J Clin Pharmacol and J New Drugs. 1967;7:131–41.

    Google Scholar 

  35. Pohler H. Caffeine intoxication and addiction. The Journal for Nurse Practicioners 2010; 6(1):49–52.

    Google Scholar 

  36. Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. 2017;359:j5024.

    CrossRef  Google Scholar 

  37. Reissig CJ, Strain EC, Griffiths RR. Caffeinated energy drinks-a growing problem. Drug Alcohol Depend. 2009;99:1–10.

    CrossRef  CAS  Google Scholar 

  38. Rodrigues IM, Klein LC. Boiled or filtered coffee? Effects of coffee and caffeine on cholesterol, fibrinogen and C-reactive protein. Toxicol Rev. 2006;25(1):55–69.

    Google Scholar 

  39. Smit HJ. Theobromine and the pharmacology of cocoa. Handb Exp Pharmacol. 2011;200:201–34.

    CrossRef  CAS  Google Scholar 

  40. Smit HJ, Gaffan EA, Rogers PJ. Methylxanthines are the psycho-pharmacologically active constituents of chocolate. Psychopharmacology (Berl). 2004;76(3–4):412–9.

    CrossRef  CAS  Google Scholar 

  41. Somerville LL. National Heart Lung and Blood Institute (NHLBI). Theophylline revisited. Allergy Asthma Proc. 2001;22(6):347–51.

    Google Scholar 

  42. Striley CW, Swain MJ. Interventions for excessive energy drink use. Curr Opin Psychiatry. 2019;32(4):288–92.

    Google Scholar 

  43. Vercammen KA, Koma WJ, Bleich SN. Trends in energy drink consumption among U.S. adolescents and adults, 2003–2016. Am J Prev Med. 2019;56(6):827–33. https://doi.org/10.1016/j.amepre.2018.12.007. PMID: 31005465

    CrossRef  Google Scholar 

  44. Wolk BJ, Ganetsky M, Babu KM. Toxicity of energy drinks. Curr Opin Pediatr. 2012;24(2):243–51.

    CrossRef  CAS  Google Scholar 

Further Reading

  • Barranco Quintana JL, Allam MF, Serrano Del Castillo A, Fernández-Crehuet Navajas R. Alzheimer’s disease and coffee: a quantitative review. Neurol Res. 2007;29(1):91–5.

    CrossRef  Google Scholar 

  • Beaudoin MS, Graham TE. Methylxanthines and human health: epidemiological and experimental evidence. Handb Exp Pharmacol. 2011;200:509–48.

    CrossRef  CAS  Google Scholar 

  • Berg JE, Høstmark AT. Cardiovascular risk factors in young drug addicts. Addict Biol. 1996;1(3):297–302.

    CrossRef  CAS  Google Scholar 

  • Bronstein AC, Spyker DA, Cantilena LR Jr, Green JL, Rumack BH, Giffin SL. 2009 annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 27th annual report. Clin Toxicol (Phila). 2010;48(10):979–1178.

    CrossRef  Google Scholar 

  • Childs E, de Wit H. Subjective, behavioral, and physiological effects of acute caffeine in light, nondependent caffeine users. Psychopharmacology (Berl). 2006;185(4):514–23.

    CrossRef  CAS  Google Scholar 

  • Cornish HH, Christman AA. A study of the metabolism of theobromine, theophylline, and caffeine in man. J Biol Chem. 1957;228(1):315–23.

    CrossRef  CAS  Google Scholar 

  • Costa J, Lunet N, Santos C, Santos J, Vaz-Carneiro A. Caffeine exposure and the risk of Parkinson’s disease: a systematic review and meta-analysis of observational studies. J Alzheimers Dis. 2010;20(Suppl 1):S221–38.

    CrossRef  CAS  Google Scholar 

  • Dai B, Liu Y, Fu L, Li Y, Zhang J, Mei C. Effect of theophylline on prevention of contrast-induced acute kidney injury: a meta-analysis of randomized controlled trials. Am J Kidney Dis. 2012;60(3):360–70.

    CrossRef  CAS  Google Scholar 

  • Freedman ND, Everhart JE, Lindsay KL, Ghany MG, Curto TM, Shiffman ML, Lee WM, Lok AS, Di Bisceglie AM, Bonkovsky HL, Hoefs JC, Dienstag JL, Morishima C, Abnet CC, Sinha R, HALT-C Trial Group. Coffee intake is associated with lower rates of liver disease progression in chronic HCV. Hepatology. 2009;50:1360–9.

    CrossRef  CAS  Google Scholar 

  • Freedman ND, Curto TM, Lindsay KL, Wright EC, Sinha R, Everhart JE, HALT-C TRIAL GROUP. Coffee consumption is associated with response to peginterferon and ribavirin therapy in patients with chronic hepatitis C. Gastroenterology. 2011;140(7):1961–9.

    CrossRef  CAS  Google Scholar 

  • Huxley R, Lee CM, Barzi F, Timmermeister L, Czernichow S, Perkovic V, Grobbee DE, Batty D, Woodward M. Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med. 2009;169(22):2053–63.

    CrossRef  Google Scholar 

  • Larsson SC, Wolk A. Coffee consumption and risk of liver cancer a meta-analysis. Gastroenterology. 2007;132:1740–5.

    CrossRef  Google Scholar 

  • Larsson SC, Männistö S, Virtanen MJ, Kontto J, Albanes D, Virtamo J. Coffee and tea consumption and risk of stroke subtypes in male smokers. Stroke. 2008;39:1681–7.

    CrossRef  CAS  Google Scholar 

  • Larsson SC, Virtamo J, Wolk A. Coffee consumption and risk for stroke in women. Stroke. 2011;42:908–12.

    CrossRef  CAS  Google Scholar 

  • Lucas M, Mirzaei F, Pan A, Okereke OI, Willett WC, O’Reilly ÉJ, Koenen K, Ascherio A. Coffee, caffeine, and risk of depression among women. Arch Intern Med. 2011;171(17):1571–8.

    CrossRef  Google Scholar 

  • Malik VS, Popkin BM, Bray GA, Després JP, Willett WC, Hu FB. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care. 2010;33(11):2477–83.

    CrossRef  Google Scholar 

  • Sharwood LN, Elkington J, Meuleners L, Ivers R, Boufous S, Stevenson M. Use of caffeinated substances and risk of crashes in long distance drivers of commercial vehicles: case-control study. BMJ. 2013;346:f1140.

    CrossRef  Google Scholar 

  • Wikoff D, Welsh BT, Henderson R, Brorby GP, Britt J, Myers E, Goldberger J, Lieberman HR, O’Brien C, Peck J, Tenebein M, Weaver C, Harvey S, Urban J, Doepker C. Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food Chem Toxicol. 2017;109(Pt 1):585–648.

    CrossRef  CAS  Google Scholar 

  • Yew D. Caffeine toxicity. 2018. Medscape. https://emedicine.medscape.com/article/821863-overview. Accessed 7 July 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Favrod-Coune .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Favrod-Coune, T., Broers, B. (2021). Addiction to Caffeine and Other Xanthines. In: el-Guebaly, N., Carrà, G., Galanter, M., Baldacchino, A.M. (eds) Textbook of Addiction Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-36391-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36391-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36390-1

  • Online ISBN: 978-3-030-36391-8

  • eBook Packages: MedicineMedicine (R0)