Advertisement

Global Whitecap Coverage from Satellite Remote Sensing and Wave Modelling

Chapter
  • 147 Downloads

Abstract

For decades, photographic measurements of whitecap coverage W have been the workhorse for characterizing oceanic whitecaps and parameterizing air-sea processes associated with them. The detail that in situ W data provide is now complemented with the possibilities offered by long-term, consistent determination of W on a global scale from passive microwave remote sensing and from third generation wave modelling. This chapter gives an overview of the development and present status of obtaining the whitecap fraction with remote sensing and wave models.

Notes

Acknowledgments

I am deeply grateful to Peter W. Gaiser and Richard M. Bevilacqua for unwavering support in pursuing passive remote sensing of whitecaps at Remote Sensing Division, NRL. The significant contributions of Michael H. Bettenhausen and William F. Johnston in developing the WindSat forward model and producing the WindSat data is acknowledged and highly appreciated. Credit is due to W. Erick Rogers for his work on the wave modeling. This work was sponsored by the Office of Naval Research (NRL program element 61153 N).

References

  1. Albert, M. F. M. A., Anguelova, M. D., Manders, A. M. M., Schaap, M., & de Leeuw, G. (2016). Parameterization of oceanic whitecap fraction based on satellite observations. Atmospheric Chemistry and Physics, 16, 13725–13751.  https://doi.org/10.5194/acp-16-13725-2016.CrossRefGoogle Scholar
  2. Anguelova, M. D. (2008). Complex dielectric constant of sea foam at microwave frequencies. Journal of Geophysical Research, 113, C08001.  https://doi.org/10.1029/2007JC004212.CrossRefGoogle Scholar
  3. Anguelova, M. D., & Bettenhausen, M. H. (2019). Whitecap fraction from satellite measurements: Algorithm description. Journal of Geophysical Research, 124, 1827–1857.  https://doi.org/10.1029/2018JC014630.
  4. Anguelova, M. D., & Gaiser, P. W. (2011). Skin depth at microwave frequencies of sea foam layers with vertical profile of void fraction. Journal of Geophysical Research, 116, C11002.  https://doi.org/10.1029/2011JC007372.CrossRefGoogle Scholar
  5. Anguelova, M. D., & Gaiser, P. W. (2012). Dielectric and radiative properties of sea foam at microwave frequencies: Conceptual understanding of foam emissivity. Remote Sensing, 4, 1162–1189.  https://doi.org/10.3390/rs4051162.CrossRefGoogle Scholar
  6. Anguelova, M. D., & Gaiser, P. W. (2013). Microwave emissivity of sea foam layers with vertically inhomogeneous dielectric properties. Remote Sensing of Environment, 139, 81–96.  https://doi.org/10.1016/j.rse.2013.07.017.CrossRefGoogle Scholar
  7. Anguelova, M. D., & Hwang, P. A. (2016). Using energy dissipation rate to obtain active whitecap fraction. Journal of Physical Oceanography, 46, 461–481.  https://doi.org/10.1175/JPO-D-15-0069.1.CrossRefGoogle Scholar
  8. Anguelova, M. D., & Webster, F. (2006). Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps. Journal of Geophysical Research, 111, C03017.  https://doi.org/10.1029/2005JC003158.CrossRefGoogle Scholar
  9. Ardhuin, F., Rogers, E., Babanin, A., Filipot, J.-F., Magne, R., Roland, A., van der Westhuysen, A., Queffeulou, P., Lefevre, J.-M., Aouf, L., & Collard, F. (2010). Semi-empirical dissipation source functions for ocean waves: Part I, definitions, calibration and validations. Journal of Physical Oceanography, 40, 1917–1941.CrossRefGoogle Scholar
  10. Asher, W. E., et al. (1995). Measurement of gas transfer, whitecap coverage, and brightness temperature in a surf pool: An overview of WABEX-93. In B. Jähne & E. Monahan (Eds.), Air-water gas transfer (pp. 205–216). Hanau: AEON Verlag.Google Scholar
  11. Asher, W. E., Wang, Q., Monahan, E. C., & Smith, P. M. (1998). Estimation of air--sea gas transfer velocities from apparent microwave brightness temperature. Marine Technology Society Journal, 32, 32–40.Google Scholar
  12. Banner, M. L., Jones, I. S. F., & Trinder, J. C. (1989). Wavenumber spectra of short gravity waves. Journal of Fluid Mechanics, 198, 321–344.  https://doi.org/10.1017/S0022112089000157.CrossRefGoogle Scholar
  13. Banner, M. L., Gemmrich, J. R., & Farmer, D. M. (2002). Multiscale measurement of ocean wave breaking probability. Journal of Physical Oceanography, 32, 3364–3374.CrossRefGoogle Scholar
  14. Banner, M. L., & Peregrine, D. H. (1993). Wave breaking in deep water. Annual Review of Fluid Mechanics, 25(1), 373–397.  https://doi.org/10.1146/annurev.fl.25.010193.002105.CrossRefGoogle Scholar
  15. Bettenhausen, M. H., Smith, C .K., Bevilacqua, R. M., Wang, N.–Y., Gaiser, P. W., and Cox, S. (2006). A nonlinear optimization algorithm for WindSat wind vector retrievals. Transactions on Geoscience and Remote Sensing, 44(3), 597–610.  https://doi.org/10.1109/TGRS.2005.862504.
  16. Bobak, J. P., Asher, W. E., Dowgiallo, D. J., & Anguelova, M. D. (2011). Aerial radiometric and video measurements of whitecap coverage. Transactions on Geoscience and Remote Sensing, 49(6), 2183–2193.  https://doi.org/10.1109/TGRS.2010.2103565.CrossRefGoogle Scholar
  17. Bondur, V., & Sharkov, E. (1982). Statistical properties of whitecaps on a rough sea. Oceanology, 22, 274–279.Google Scholar
  18. Bourassa, M. (2004). An improved sea state dependency for surface stress derived from in situ and remotely sensed winds. Advances in Space Research, 33, 1136–1142.CrossRefGoogle Scholar
  19. Brumer, S. E., Zappa, C. J., Brooks, I. M., Tamura, H., Brown, S. M., Blomquist, B. W., Fairall, C. W., & Cifuentes-Lorenzen, A. (2017). Whitecap coverage dependence on wind and wave statistics as observed during SO GasEx and HiWinGS. Journal of Physical Oceanography, 47, 2211–2235.  https://doi.org/10.1175/JPO-D-17-0005.1.CrossRefGoogle Scholar
  20. Cardone, V. J. (1969). Specification of the wind distribution in the marine boundary layer for wave forecasting (Tech. Rep. 69–1, Geophys) (131 pp). Sci. Lab: New York University.CrossRefGoogle Scholar
  21. Chen, D., Tsang, L., Zhou, L., Reising, S. C., Asher, W. E., Rose, L. A., Ding, K. H., & Chen, C. T. (2003). Microwave emission and scattering of foam based on Monte Carlo simulations of dense media. IEEE Transactions on Geoscience and Remote Sensing, 41, 782–790.CrossRefGoogle Scholar
  22. de Leeuw, G., Andreas, E. L , Anguelova, M. D., Fairall, C. W., Lewis, E. R., O’Dowd, C. D., Schulz, M., and Schwartz, S. E. (2011). Production flux of sea-spray aerosol. Reviews of Geophysics, 49, RG2001.  https://doi.org/10.1029/2010RG000349.
  23. Donelan, M., Dobson, F., Smith, S., & Anderson, R. (1993). On the dependence of sea surface roughness on wave development. Journal of Physical Oceanography, 23, 2143–2149.CrossRefGoogle Scholar
  24. Drazen, D. A., Melville, W. K., & Lenain, L. (2008). Inertial scaling of dissipation in unsteady breaking waves. Journal of Fluid Mechanics, 611, 307332.  https://doi.org/10.1017/S0022112008002826.CrossRefGoogle Scholar
  25. Droppleman, J. (1970). Apparent microwave emissivity of sea foam. Journal of Geophysical Research, 75, 696–698.CrossRefGoogle Scholar
  26. ECMWF. (2013). IFS documentation CY40r1, Part VII: ECMWF Wave Model. ECMWF Model Doc., 79 p., http://www.ecmwf.int/sites/default/files/IFS_CY40R1_Part7.pdf
  27. Fairall, C., Hare, J., Edson, J., & McGillis, W. (2000). Parameterization and micrometeorological measurement of Air–Sea gas transfer. Boundary-Layer Meteorology, 96, 63–106.Google Scholar
  28. Gaiser, P. W., St Germain, K. M., Twarog, E. M., Poe, G. A., Purdy, W., Richardson, D., et al. (2004). The WindSat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance. Transactions on Geoscience and Remote Sensing, 42, 2347–2361.  https://doi.org/10.1109/TGRS.2004.836867.CrossRefGoogle Scholar
  29. Goddijn-Murphy, L., Woolf, D. K., & Callaghan, A. H. (2011). Parameterizations and algorithms for oceanic whitecap coverage. Journal of Physical Oceanography, 41, 742–756.CrossRefGoogle Scholar
  30. Hanson, J. L., & Phillips, O. M. (1999). Wind sea growth and dissipation in the open ocean. Journal of Physical Oceanography, 29, 1633–1648.CrossRefGoogle Scholar
  31. Hasselmann, K. (1974). On the spectral dissipation of ocean waves due to whitecapping. Boundary-Layer Meteorology, 6, 107–127.CrossRefGoogle Scholar
  32. Hwang, P. A., & Sletten, M. A. (2008). Energy dissipation of wind-generated waves and whitecap coverage. Journal of Geophysical Research, 113, C02012.  https://doi.org/10.1029/2007JC004277. (Corrigendum 2009, 114, C02015. https://doi.org/10.1029/2008JC005244).CrossRefGoogle Scholar
  33. Janssen, P. A. E. M., Lionello, P., Reistad, M., & Hollingsworth, A. (1989). Hindcasts and data assimilation studies with the WAM model during the Seasat period. Journal of Geophysical Research, C94, 973–993.CrossRefGoogle Scholar
  34. Jessup, A. T., Zappa, C. J., Loewen, M. R., & Hesany, V. (1997). Infrared remote sensing of breaking waves. Nature, 385, 52–55.CrossRefGoogle Scholar
  35. Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., & Janssen, P. A. E. M. (1994). Dynamics and modeling of ocean waves (532 pp). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  36. Kraan, C., Oost, W., & Janssen, P. (1996). Wave energy dissipation by whitecaps. Journal of Atmospheric and Oceanic Technology, 13, 262–267.CrossRefGoogle Scholar
  37. Leckler, F., Ardhuin, F., Filipot, J. F., & Mironov, A. (2013). Dissipation source terms and whitecap statistics. Ocean Modelling, 70(2013), 62–74.  https://doi.org/10.1016/j.ocemod.2013.03.007.CrossRefGoogle Scholar
  38. Meissner, T., & Wentz, F. J. (2012). The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles. Transactions on Geoscience and Remote Sensing, 50(8), 3004–3026.  https://doi.org/10.1109/TGRS.2011.2179662.CrossRefGoogle Scholar
  39. Melville, W., & Matusov, P. (2002). Distribution of breaking waves at the ocean surface. Nature, 417, 58–63.CrossRefGoogle Scholar
  40. Militskii, Y. A., Raizer, V. Y., Sharkov, E. A., & Etkin, V. S. (1978). Thermal radio emission from foam structures. Soviet Physics – Technical Physics, 23, 601–602.Google Scholar
  41. Mironov, A. S., & Dulov, V. A. (2008). Detection of wave breaking using sea surface video records. Measurement Science and Technology, 19, 015405.  https://doi.org/10.1088/0957-0233/19/1/015405.CrossRefGoogle Scholar
  42. Monahan, E. C. (1971). Oceanic whitecaps. Journal of Physical Oceanography, 1, 139–144.CrossRefGoogle Scholar
  43. Monahan, E. C., Hooker, G., Zappa, C. J. (2015). The latitudinal variation in the wind-speed parameterization of oceanic whitecap coverage; implications for global modelling of air-sea gas flux and sea surface aerosol generation. In: 19th Conference on Air-Sea Interaction, January 04–08, Phoenix, AZ.Google Scholar
  44. Monahan, E. C., & Lu, M. (1990). Acoustically relevant bubble assemblages and their dependence on meteorological parameters. Journal of Oceanic Engineering, 15(4), 340–349.  https://doi.org/10.1109/48.103530.CrossRefGoogle Scholar
  45. Monahan, E. C., & O’Muircheartaigh, I. (1980). Optimal power-law description of oceanic whitecap coverage dependence on wind speed. Journal of Physical Oceanography, 10, 2094–2099.  https://doi.org/10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2.CrossRefGoogle Scholar
  46. Monahan, E. C., & O’Muircheartaigh, I. (1986). Whitecaps and the passive remote sensing of the ocean surface. International Journal of Remote Sensing, 7, 627–642.  https://doi.org/10.1080/01431168608954716.CrossRefGoogle Scholar
  47. Monahan, E. C., & Woolf, D. K. (1989). Comments on variations of whitecap coverage with wind stress and water temperature. Journal of Physical Oceanography, 19, 706–709.CrossRefGoogle Scholar
  48. Nordberg, W., Conaway, J., Ross, D., & Wilheit, T. (1971). Measurements of microwave emission from a foam-covered, wind-driven sea. Journal of the Atmospheric Sciences, 28, 429–435.Google Scholar
  49. Padmanabhan, S., Reising, S. C., Asher, W. E., Rose, L. A., & Gaiser, P. W. (2006). Effects of foam on ocean surface microwave emission inferred from radiometric observations of reproducible breaking waves. IEEE Transactions on Geoscience and Remote Sensing, 44, 569–583.CrossRefGoogle Scholar
  50. Paget, A. C., Bourassa, M. A., & Anguelova, M. D. (2015). Comparing in situ and satellite-based observations of oceanic whitecaps. Journal of Geophysical Research, 120, 2826–2843.  https://doi.org/10.1002/2014JC010328.CrossRefGoogle Scholar
  51. Pandey, P., & Kakar, R. (1982). An empirical microwave emissivity model for a foam-covered sea. Journal of Oceanic Engineering, 7(3), 135–140.  https://doi.org/10.1109/JOE.1982.1145527.CrossRefGoogle Scholar
  52. Phillips, O. M. (1985). Spectral and statistical properties of the equilibrium range in wind-generated gravity-waves. Journal of Fluid Mechanics, 156, 505–531.CrossRefGoogle Scholar
  53. Potter, H., Smith, G. B., Snow, C. M., Dowgiallo, D. J., Bobak, J. P., & Anguelova, M. D. (2015). Whitecap lifetime stages from infrared imagery with implications for microwave radiometric measurements of whitecap fraction. Journal of Geophysical Research, 120, 7521–7537.  https://doi.org/10.1002/2015JC011276.CrossRefGoogle Scholar
  54. Randolph, K., Dierssen, H. M., Cifuentes-Lorenzen, A., Balch, W., Monahan, E. C., Zappa, C., Drapeau, D., & Bowler, B. (2017). Novel methods for optically measuring whitecaps under natural wave breaking conditions in the Southern Ocean. Journal of Atmospheric and Oceanic Technology, 34, 533–554.  https://doi.org/10.1175/JTECH-D-16-0086.1.CrossRefGoogle Scholar
  55. Reul, N., & Chapron, B. (2003). A model of sea-foam thickness distribution for passive microwave remote sensing applications. Journal of Geophysical Research, 108(C10), 3321.  https://doi.org/10.1029/2003JC001887.CrossRefGoogle Scholar
  56. Rogers, W. E., Anguelova, M. D., Hwang, P. A. (2012). Satellite radiometer (Windsat) estimates of whitecap coverage interpreted using a global numerical wave model hindcast. Abstract OS13E-1780 presented at 2012 fall meeting, AGU, San Francisco, Calif., 3–7 Dec.Google Scholar
  57. Rose, L. A., Asher, W. E., Reising, S. C., Gaiser, P. W., St Germain, K. M., Dowgiallo, D. J., Horgan, K. A., Farquharson, G., & Knapp, E. J. (2002). Radiometric measurements of the microwave emissivity of foam. IEEE Transactions on Geoscience and Remote Sensing, 40, 2619–2625.CrossRefGoogle Scholar
  58. Ross, D., & Cardone, V. (1974). Observations of oceanic whitecaps and their relation to remote measurements of surface wind speed. Journal of Geophysical Research, 79, 444–452.CrossRefGoogle Scholar
  59. Salisbury, D. J., Anguelova, M. D., & Brooks, I. M. (2013). On the variability of whitecap fraction using satellite-based observations. Journal of Geophysical Research, 118, 6201–6222.  https://doi.org/10.1002/2013JC008797.CrossRefGoogle Scholar
  60. Scanlon, B., Breivik, Ø., Bidlot, J.-R., Janssen, P., Callaghan, A., & Ward, B. (2016). Modelling whitecap coverage with a wave model. Journal of Physical Oceanography, 46, 887–894.  https://doi.org/10.1175/JPO-D-15-0158.1.
  61. Smith, P. M. (1988). The emissivity of sea foam at 19 and 37 GHz. IEEE Transactions on Geoscience and Remote Sensing, 26, 541–547.CrossRefGoogle Scholar
  62. Snyder, R., & Kennedy, R. (1983). On the formation of whitecaps by a threshold mechanism. Part I: Basic formalism. Journal of Physical Oceanography, 13, 1482–1492.CrossRefGoogle Scholar
  63. Stogryn, A. P. (1967). The apparent temperature of the sea at microwave frequencies. Transactions on Antennas and Propagation, 15(2), 278–286.  https://doi.org/10.1109/TAP.1967.1138900.CrossRefGoogle Scholar
  64. Stogryn, A. P. (1972). The emissivity of sea foam at microwave frequencies. Journal of Geophysical Research, 77(9), 1658–1666.  https://doi.org/10.1029/JC077i009p01658.CrossRefGoogle Scholar
  65. Sugihara, Y., Tsumori, H., Ohga, T., Yoshioka, H., & Serizawa, S. (2007). Variation of whitecap coverage with wave-field conditions. Journal of Marine Systems, 66, 47–60.  https://doi.org/10.1016/j.jmarsys.2006.01.014.CrossRefGoogle Scholar
  66. Taylor, P., & Yelland, M. (2001). The dependence of sea surface roughness on the height and steepness of the waves. Journal of Physical Oceanography, 31, 572–590.CrossRefGoogle Scholar
  67. Tolman, H. L., Balasubramaniyan, B., Burroughs, L. D., Chalikov, D. V., Chao, Y. Y., Chen, H. S., & Gerald, V. M. (2002). Development and implementation of wind-generated ocean surface wave models at NCEP. Weather Forecasting, 17, 311–333.  https://doi.org/10.1175/1520-0434(2002)017,0311:DAIOWG.2.0.CO;2.CrossRefGoogle Scholar
  68. WAMDI Group. (1988). The WAM model—A third generation ocean wave prediction model. Journal of Physical Oceanography, 18, 1775–1810.  https://doi.org/10.1175/1520-0485(1988)018,1775:TWMTGO.2.0.CO;2.CrossRefGoogle Scholar
  69. Wang, Q., Monahan, E., Asher, W., & Smith, P. (1995). Correlations of whitecap coverage and gas transfer velocity with microwave brightness temperature for plunging and spilling breaking waves. In B. Jähne & E. Monahan (Eds.), Air-water gas transfer (pp. 217–225). Hanau: AEON Verlag.Google Scholar
  70. Wentz, F. J. (1975). A two-scale scattering model for foam-free sea microwave brightness temperatures. Journal of Geophysical Research, 80(24), 3441–3446.  https://doi.org/10.1029/JC080i024p03441.CrossRefGoogle Scholar
  71. Wentz, F. J. (1983). A model function for ocean microwave brightness temperatures. Journal of Geophysical Research, 88(C3), 1892–1908.  https://doi.org/10.1029/JC088iC03p01892.CrossRefGoogle Scholar
  72. Wentz, F. J. (1997). A well-calibrated ocean algorithm for special sensor microwave/imager. Journal of Geophysical Research, 102(C4), 8703–8718.  https://doi.org/10.1029/96JC01751.CrossRefGoogle Scholar
  73. Williams, G., Jr. (1969). Microwave radiometry of the ocean and the possibility of marine wind velocity determination from satellite observations. Journal of Geophysical Research, 18, 4591–4594.CrossRefGoogle Scholar
  74. WISE Group. (2007). Progress in Oceanography, 75, 603–674.  https://doi.org/10.1016/j.pocean.2007.05.005.CrossRefGoogle Scholar
  75. Woolf, D. K. (2005). Parametrization of gas transfer velocities and sea-state-dependent wave breaking. Tellus, 57B, 87–94.CrossRefGoogle Scholar
  76. Wu, J. (1979). Oceanic whitecaps and sea state. Journal of Physical Oceanography, 9, 1064–1068.CrossRefGoogle Scholar
  77. Wu, J. (1988). Variations of whitecap coverage with wind stress and water temperature. Journal of Physical Oceanography, 18, 1448–1453.CrossRefGoogle Scholar
  78. Wu, J. (1992). Individual characteristics of whitecaps and volumetric description of bubbles. IEEE Transactions on Antennas and Propagation, 17, 150–158.Google Scholar
  79. Zhao, D., & Toba, Y. (2001). Dependence of whitecap coverage on wind and wind-wave properties. Journal of Oceanography, 57, 603–616.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Remote Sensing Division, Naval Research LaboratoryWashingtonUSA

Personalised recommendations