Skip to main content

Employee Turnover Prediction Using Machine Learning

Part of the Communications in Computer and Information Science book series (CCIS,volume 1097)

Abstract

High employee turnover is a common problem that can affect organizational performance and growth. The ability to predict employee turnover would be an invaluable tool for any organization seeking to retain employees and predict their future behavior. This study employed machine learning (ML) algorithms to predict whether employees would leave a company. It presented a comparative performance combination of five ML algorithms and three Feature Selection techniques. In this experiment, the best predictors were identified using the SelectKBest, Recursive Feature Elimination (RFE) and Random Forest (RF) model. Different ML algorithms were trained, which included logistic regression, decision tree (DT), naïve Bayes, support vector machine (SVM) and AdaBoost with optimal hyperparameters. In the last phase of the experiment, the predictive models’ performance was evaluated using several critical metrics. The empirical results have demonstrated that two predictive models performed better: DT with SelectKBest and the SVM-polynomial kernel using RF.

Keywords

  • Employee turnover
  • Machine learning
  • Support vector machine
  • Feature selection
  • Decision tree

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-36365-9_25
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-36365-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

References

  1. Sikaroudi, E., et al.: A data mining approach to employee turnover prediction (case study: Arak automotive parts manufacturing). J. Ind. Syst. Eng. 8(4), 106–121 (2015)

    Google Scholar 

  2. Keramati, A., et al.: Improved churn prediction in telecommunication industry using data mining techniques. Appl. Soft Comput. 24, 994–1012 (2014)

    CrossRef  Google Scholar 

  3. Fan, C.-Y., et al.: Using hybrid data mining and machine learning clustering analysis to predict the turnover rate for technology professionals. Expert Syst. Appl. 39(10), 8844–8851 (2012)

    CrossRef  Google Scholar 

  4. Chien, C.-F., Chen, L.-F.: Data mining to improve personnel selection and enhance human capital: a case study in high-technology industry. Expert Syst. Appl. 34(1), 280–290 (2008)

    CrossRef  Google Scholar 

  5. Saradhi, V.V., Palshikar, G.K.: Employee churn prediction. Expert Syst. Appl. 38(3), 1999–2006 (2011)

    CrossRef  Google Scholar 

  6. Hung, S.-Y., Yen, D.C., Wang, H.-Y.: Applying data mining to telecom churn management. Expert Syst. Appl. 31(3), 515–524 (2006)

    CrossRef  Google Scholar 

  7. Valle, M.A., Ruz, G.A.: Turnover prediction in a call center: behavioral evidence of loss aversion using random forest and Naïve Bayes algorithms. Appl. Artif. Intell. 29(9), 923–942 (2015)

    CrossRef  Google Scholar 

  8. García, D.L., Nebot, À., Vellido, A.: Intelligent data analysis approaches to churn as a business problem: a survey. Knowl. Inf. Syst. 51(3), 719–774 (2017)

    CrossRef  Google Scholar 

  9. Rombaut, E., Guerry, M.-A.: Predicting voluntary turnover through human resources database analysis. Manag. Res. Rev. 41(1), 96–112 (2018)

    CrossRef  Google Scholar 

  10. Lima, E., Mues, C., Baesens, B.: Domain knowledge integration in data mining using decision tables: case studies in churn prediction. J. Oper. Res. Soc. 60(8), 1096–1106 (2017)

    CrossRef  Google Scholar 

  11. De Caigny, A., Coussement, K., De Bock, K.W.: A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. Eur. J. Oper. Res. 269(2), 760–772 (2018)

    MathSciNet  CrossRef  Google Scholar 

  12. Vafeiadis, T., et al.: A comparison of machine learning techniques for customer churn prediction. Simul. Model. Pract. Theory 55, 1–9 (2015)

    CrossRef  Google Scholar 

  13. Valle, M.A., Varas, S., Ruz, G.A.: Job performance prediction in a call center using a Naive Bayes classifier. Expert Syst. Appl. 39(11), 9939–9945 (2012)

    CrossRef  Google Scholar 

  14. Shearer, C.: The CRISP-DM model: the new blueprint for data mining. J. Data Warehous. 5(4), 13–22 (2000)

    Google Scholar 

  15. Kaggle. HR Analytics (2017). https://www.kaggle.com/colara/hr-analytics

  16. Sainani, K.L.: Introduction to Survival Analysis. PM R 8(6), 580–585 (2016)

    CrossRef  Google Scholar 

  17. Kartsonaki, C.: Survival analysis. Diagn. Histopathol. 22(7), 263–270 (2016)

    CrossRef  Google Scholar 

  18. Amin, A., et al.: Comparing oversampling techniques to handle the class imbalance problem: a customer churn prediction case study. IEEE Access 4, 7940–7957 (2016)

    CrossRef  Google Scholar 

  19. Jain, D., Singh, V.: Feature selection and classification systems for chronic disease prediction: a review. Egypt. Inform. J. 19(3), 179–189 (2018)

    CrossRef  Google Scholar 

  20. Gao, X., Hou, J.: An improved SVM integrated GS-PCA fault diagnosis approach of Tennessee Eastman process. Neurocomputing 174, 906–911 (2016)

    CrossRef  Google Scholar 

  21. Moosavi, M., Soltani, N.: Prediction of the specific volume of polymeric systems using the artificial neural network-group contribution method. Fluid Phase Equilib. 356, 176–184 (2013)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lama Alaskar , Martin Crane or Mai Alduailij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Alaskar, L., Crane, M., Alduailij, M. (2019). Employee Turnover Prediction Using Machine Learning. In: Alfaries, A., Mengash, H., Yasar, A., Shakshuki, E. (eds) Advances in Data Science, Cyber Security and IT Applications. ICC 2019. Communications in Computer and Information Science, vol 1097. Springer, Cham. https://doi.org/10.1007/978-3-030-36365-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36365-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36364-2

  • Online ISBN: 978-3-030-36365-9

  • eBook Packages: Computer ScienceComputer Science (R0)