Skip to main content

Basic Concepts, Engineering, and Advances in Dye-Sensitized Solar Cells

  • Chapter
  • First Online:
Solar Cells

Abstract

The day–by-day increasing need for light energy has reduced the necessary supply of energy for mankind usage and hiked the prices of natural energy resources. To avoid energy tragedy in future, one needs to use the non-degrading sources of energy for energy harvesting. The advancement in solar cell technology allows us to convert the sunlight more efficiently into electrical energy, though the low cost with highly stable and efficient solar cells is still desirable. The dye-sensitized solar cells (DSSCs), a class of third-generation photovoltaic cell, have emerged out as economic, eco-friendly, and much easier fabrication process over other existing technologies such as single-crystal Si solar cells, polycrystalline Si solar cells, thin-film solar cells, and other semiconductor (GaAs, CdTe, CuInSe2, etc.) thin films. The main challenge and limiting factor with DSSC’s fabrication are their efficiency and durability in the environment. In the last decade, enormous efforts have been made to improve the efficiency and stability of DSSCs. One of the possible ways is the manipulation of light at nanoscale on some metal–dielectric interface and integrating it on some cheaper electronic devices for highly efficient solar cell applications. On the other hand, the research on modifying the design and fabrication of photoanode, dyes materials, and counter electrode materials have paid huge attention in architecting DSSCs. This chapter provides an insight into the fabrication of DSSCs and the challenges associated with its fabrication, stability, and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Regan B, Gratzel M (1991) A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–739

    Google Scholar 

  2. Campbell WM, Jolley KW, Wagner P et al (2007) Highly efficient porphyrin sensitizers for dye-sensitized solar cells. J Phys Chem C 111:11760–11762. https://doi.org/10.1021/jp0750598

    Article  CAS  Google Scholar 

  3. Burschka J, Pellet N, Moon SJ et al (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319. https://doi.org/10.1038/nature12340

    Article  CAS  Google Scholar 

  4. Yum JH, Baranoff E, Kessler F et al (2012) A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nat Commun 3:1–8. https://doi.org/10.1038/ncomms1655

    Article  CAS  Google Scholar 

  5. Bella F, Gerbaldi C, Barolo C, Grätzel M (2015) Aqueous dye-sensitized solar cells. Chem Soc Rev 44:3431–3473. https://doi.org/10.1039/c4cs00456f

    Article  CAS  Google Scholar 

  6. Dwivedi C, Dutta V, Chandiran AK et al (2013) Anatase TiO2 hollow microspheres fabricated by continuous spray pyrolysis as a scattering layer in dye-sensitised solar cells. Energy Procedia 33:223–227. https://doi.org/10.1016/j.egypro.2013.05.061

    Article  CAS  Google Scholar 

  7. Tétreault N, Arsenault É, Heiniger LP et al (2011) High-efficiency dye-sensitized solar cell with three-dimensional photoanode. Nano Lett 11:4579–4584. https://doi.org/10.1021/nl201792r

    Article  CAS  Google Scholar 

  8. Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851. https://doi.org/10.1021/ic0508371

    Article  CAS  Google Scholar 

  9. Mathew S, Yella A, Gao P et al (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247. https://doi.org/10.1038/nchem.1861

    Article  CAS  Google Scholar 

  10. Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A Chem 164:3–14. https://doi.org/10.1016/j.jphotochem.2004.02.023

    Article  CAS  Google Scholar 

  11. Ito S, Murakami TN, Comte P et al (2008) Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516:4613–4619. https://doi.org/10.1016/j.tsf.2007.05.090

    Article  CAS  Google Scholar 

  12. Kavan L, Yum JH, Grätzel M (2011) Graphene nanoplatelets outperforming platinum as the electrocatalyst in co-bipyridine-mediated dye-sensitized solar cells. Nano Lett 11:5501–5506. https://doi.org/10.1021/nl203329c

    Article  CAS  Google Scholar 

  13. Freitag M, Teuscher J, Saygili Y et al (2017) Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat Photonics 11:372–378. https://doi.org/10.1038/nphoton.2017.60

    Article  CAS  Google Scholar 

  14. Nazeeruddin MK, Baranoff E, Grätzel M (2011) Dye-sensitized solar cells: a brief overview. Sol Energy 85:1172–1178. https://doi.org/10.1016/j.solener.2011.01.018

    Article  CAS  Google Scholar 

  15. Yella A, Lee H-W, Tsao HN, et al (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12% efficiency. Science 334(80):629–634. https://doi.org/10.1002/da.22291

    Article  Google Scholar 

  16. Singh E, Kim KS, Yeom GY, Nalwa HS (2017) Two-dimensional transition metal dichalcogenide-based counter electrodes for dye-sensitized solar cells. RSC Adv 7:28234–28290. https://doi.org/10.1039/c7ra03599c

    Article  CAS  Google Scholar 

  17. Wu WQ, Lei BX, Rao HS et al (2013) Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells. Sci Rep 3:1–7. https://doi.org/10.1038/srep01352

    Article  CAS  Google Scholar 

  18. Law M, Greene LE, Johnson JC et al (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459. https://doi.org/10.1038/nmat1387

    Article  CAS  Google Scholar 

  19. Varghese OK, Paulose M, Grimes CA (2009) Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat Nanotechnol 4:592–597. https://doi.org/10.1038/nnano.2009.226

    Article  CAS  Google Scholar 

  20. Yang L, Leung WW-F (2011) Application of a bilayer TiO2 nanofiber photoanode for optimization of dye-sensitized solar cells. Adv Mater 23:4559–4562. https://doi.org/10.1002/adma.201102717

    Article  CAS  Google Scholar 

  21. Xia JB, Li FY, Yang SM, Huang CH (2004) Composite electrode SnO2/TiO2 for dye-sensitized solar cells. 15:619–622

    Google Scholar 

  22. Miao Q, Wu L, Cui J et al (2011) A new type of dye-sensitized solar cell with a multilayered photoanode prepared by a film-transfer technique. Adv Mater 23:2764–2768. https://doi.org/10.1002/adma.201100820

    Article  CAS  Google Scholar 

  23. Jia HL, Chen YC, Ji L et al (2019) Cosensitization of porphyrin dyes with new X type organic dyes for efficient dye-sensitized solar cells. Dye Pigment 163:589–593. https://doi.org/10.1016/j.dyepig.2018.12.048

    Article  CAS  Google Scholar 

  24. Deepa KG, Lekha P, Sindhu S (2012) Efficiency enhancement in DSSC using metal nanoparticles: a size dependent study. Sol Energy 86:326–330. https://doi.org/10.1016/j.solener.2011.10.007

    Article  CAS  Google Scholar 

  25. Chandrasekhar PS, Elbohy H, Vaggensmith B et al (2017) Plasmonic silver nanowires for higher efficiency dye-sensitized solar cells. Mater Today Energy 5:237–242. https://doi.org/10.1016/j.mtener.2017.07.005

    Article  Google Scholar 

  26. Shaik F, Peer I, Jain PK, Amirav L (2018) Plasmon-enhanced multicarrier photocatalysis. Nano Lett 18:4370–4376. https://doi.org/10.1021/acs.nanolett.8b01392

    Article  CAS  Google Scholar 

  27. Shakeel Ahmad M, Pandey AK, Rahim NA (2017) Towards the plasmonic effect of Zn nanoparticles on TiO2 monolayer photoanode for dye sensitized solar cell applications. Mater Lett 195:62–65. https://doi.org/10.1016/j.matlet.2017.02.099

    Article  CAS  Google Scholar 

  28. Muduli S, Game O, Dhas V et al (2012) TiO2–Au plasmonic nanocomposite for enhanced dye-sensitized solar cell (DSSC) performance. 86:1428–1434. https://doi.org/10.1016/j.solener.2012.02.002

    Article  CAS  Google Scholar 

  29. Liu Q, Wei Y, Shahid MZ et al (2018) Spectrum-enhanced Au@ZnO plasmonic nanoparticles for boosting dye-sensitized solar cell performance. J Power Sources 380:142–148. https://doi.org/10.1016/j.jpowsour.2018.01.089

    Article  CAS  Google Scholar 

  30. Agrawal M, Peumans P (2008) Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells. Opt Express 16:5385–5396

    Article  Google Scholar 

  31. Guldin S, Hüttner S, Kolle M et al (2010) Dye-sensitized solar cell based on a three-dimensional photonic crystal. Nano Lett 10:2303–2309. https://doi.org/10.1021/nl904017t

    Article  CAS  Google Scholar 

  32. Halaoui LI, Abrams NM, Mallouk TE (2005) Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals. J Phys Chem B 109:6334–6342. https://doi.org/10.1021/jp044228a

    Article  CAS  Google Scholar 

  33. Yip CH, Chiang YM, Wong CC (2008) Dielectric band edge enhancement of energy conversion efficiency in photonic crystal dye-sensitized solar cell. J Phys Chem C 112:8735–8740. https://doi.org/10.1021/jp801385k

    Article  CAS  Google Scholar 

  34. Yip CT, Huang H, Zhou L et al (2011) Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: A single-step approach. Adv Mater 23:5624–5628. https://doi.org/10.1002/adma.201103591

    Article  CAS  Google Scholar 

  35. Wu J, Lan Z, Lin J et al (2017) Counter electrodes in dye-sensitized solar cells. Chem Soc Rev 46:5975–6023. https://doi.org/10.1039/c6cs00752j

    Article  CAS  Google Scholar 

  36. Wu J, Lan Z, Lin J et al (2015) Electrolytes in dye-sensitized solar cells. Chem Rev 115:2136–2173. https://doi.org/10.1021/cr400675m

    Article  CAS  Google Scholar 

  37. Yanagida S, Yu Y, Manseki K (2009) Iodine/iodide-free dye-sensitized solar cells. Acc Chem Res 42:1827–1838. https://doi.org/10.1021/ar900069p

    Article  CAS  Google Scholar 

  38. Shaikh JS, Shaikh NS, Mali SS et al (2018) Nanoarchitectures in dye-sensitized solar cells: Metal oxides, oxide perovskites and carbon-based materials. Nanoscale 10:4987–5034. https://doi.org/10.1039/c7nr08350e

    Article  CAS  Google Scholar 

  39. Upadhyaya HM, Senthilarasu S, Hsu M, Kumar DK (2013) Solar energy materials & solar cells recent progress and the status of dye-sensitised solar cell (DSSC) technology with state-of-the-art conversion efficiencies. Sol Energy Mater Sol Cells 119:291–295. https://doi.org/10.1016/j.solmat.2013.08.031

    Article  CAS  Google Scholar 

  40. Jiao Y, Zhang F, Meng S (2011) Dye sensitized solar cells principles and new design. Sol Cells Dye Devices. https://doi.org/10.5772/21393

    Google Scholar 

  41. Fan Y-H, Ho C-Y, Chang Y-J (2017) Enhancement of dye-sensitized solar cells efficiency using mixed-phase TiO2 nanoparticles as photoanode. Scanning 2017:1–7. https://doi.org/10.1155/2017/9152973

    Article  CAS  Google Scholar 

  42. Giribabu L, Bolligarla R, Panigrahi M (2015) Recent advances of cobalt(II/III) redox couples for dye-sensitized solar cell applications. Chem Rec 15:760–788. https://doi.org/10.1002/tcr.201402098

    Article  CAS  Google Scholar 

  43. Wei D (2010) Dye sensitized solar cells. Int J Mol Sci 11:1103–1113. https://doi.org/10.3390/ijms11031103

    Article  CAS  Google Scholar 

  44. Somdee A (2019) Improved photovoltaic efficiency of dye sensitized solar cells by decorating TiO2 photoanode with barium titanate oxide. J Alloys Compd 777:1251–1257. https://doi.org/10.1016/j.jallcom.2018.11.085

    Article  CAS  Google Scholar 

  45. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C … 4:145–153. https://doi.org/10.1016/s1389-5567(03)00026-1

    Article  Google Scholar 

  46. Gr M, Berkeley UC, Gr M et al (2018) Dye-sensitized solar cell. 663–700

    Google Scholar 

  47. Ameta R, Benjamin S, Sharma S, Trivedi M (2015) Dye-sensitized solar cells. Sol Energy Convers Storage Photochem Modes 4:85–113. https://doi.org/10.1201/b19148

    Article  Google Scholar 

  48. Bella F, Pugliese D, Zolin L, Gerbaldi C (2017) Paper-based quasi-solid dye-sensitized solar cells. Electrochim Acta 237:87–93. https://doi.org/10.1016/j.electacta.2017.03.211

    Article  CAS  Google Scholar 

  49. Hagfeldt A, Boschloo G, Sun L et al (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663. https://doi.org/10.1021/cr900356p

    Article  CAS  Google Scholar 

  50. Kabir F, Sakib SN, Matin N (2018) Stability study of natural green dye based DSSC. Optik (Stuttg) 181:458–464. https://doi.org/10.1016/J.IJLEO.2018.12.077

    Article  Google Scholar 

  51. Mcgehee MD (2011) Paradigm shifts in dye-sensitized solar cells 334:607–609

    CAS  Google Scholar 

  52. Zhang S, Yang X, Numata Y, Han L (2013) Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ Sci 6:1443–1464. https://doi.org/10.1039/c3ee24453a

    Article  CAS  Google Scholar 

  53. Pazoki M, Cappel UB, Johansson EMJ et al (2017) Characterization techniques for dye-sensitized solar cells. Energy Environ Sci 10:672–709. https://doi.org/10.1039/c6ee02732f

    Article  CAS  Google Scholar 

  54. Frank AJ (2010) Recent advances in sensitized solar cells. Green Energy Technol 43:153–168. https://doi.org/10.1007/978-3-642-14935-1_6

    Article  Google Scholar 

  55. Rho WY, Jeon H, Kim HS et al (2015) Recent progress in dye-sensitized solar cells for improving efficiency: TiO2 nanotube arrays in active layer. J Nanomater 2015:1–17. https://doi.org/10.1155/2015/247689

    Article  CAS  Google Scholar 

  56. Listorti A, O’Regan B, Durrant JR (2011) Electron transfer dynamics in dye-sensitized solar cells. Chem Mater 23:3381–3399. https://doi.org/10.1021/cm200651e

    Article  CAS  Google Scholar 

  57. Gong J, Sumathy K, Qiao Q, Zhou Z (2017) Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew Sustain Energy Rev 68:234–246. https://doi.org/10.1016/j.rser.2016.09.097

    Article  CAS  Google Scholar 

  58. Ahmed U, Alizadeh M, Rahim NA et al (2018) A comprehensive review on counter electrodes for dye sensitized solar cells: a special focus on Pt-TCO free counter electrodes. Sol Energy 174:1097–1125. https://doi.org/10.1016/j.solener.2018.10.010

    Article  CAS  Google Scholar 

  59. Gong J, Liang J, Sumathy K (2012) Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renew Sustain Energy Rev 16:5848–5860. https://doi.org/10.1016/j.rser.2012.04.044

    Article  CAS  Google Scholar 

  60. Raj CC, Prasanth R (2016) A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells. J Power Sources 317:120–132. https://doi.org/10.1016/j.jpowsour.2016.03.016

    Article  CAS  Google Scholar 

  61. Andualem A, Demiss S (2018) Review on dye-sensitized solar cells (DSSCs). Edelweiss Appl Sci Technol 2:145–150. https://doi.org/10.1016/j.rser.2016.09.097T4

    Article  Google Scholar 

  62. Hao S, Wu J, Huang Y, Lin J (2006) Natural dyes as photosensitizers for dye-sensitized solar cell. Sol Energy 80:209–214. https://doi.org/10.1016/j.solener.2005.05.009

    Article  CAS  Google Scholar 

  63. Hara K, Arakawa H (2003) Handbook of photovoltaic science and engineering: chapter 15—dye-sensitized solar cells. Wiley

    Google Scholar 

  64. Bach U, Lupo D, Comte P et al (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395:583–585. https://doi.org/10.1002/9780470638859.conrr518

    Article  CAS  Google Scholar 

  65. Murakoshi K, Kogure R, Wada Y, Yanagida S (1998) Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole. Sol Energy Mater Sol Cells 55:113–125. https://doi.org/10.1016/S0927-0248(98)00052-X

    Article  CAS  Google Scholar 

  66. Yoon S, Kim H, Shin ES et al (2017) Toward high conductivity of electrospun indium tin oxide nanofibers with fiber morphology dependent surface coverage: postannealing and polymer ratio effects. ACS Appl Mater Interfaces 9:34305–34313. https://doi.org/10.1021/acsami.7b08987

    Article  CAS  Google Scholar 

  67. Liao B-H, Chan S-H, Lee C-C et al (2013) FTO films deposited in transition and oxide modes by magnetron sputtering using tin metal target. Appl Opt 53:A148. https://doi.org/10.1364/ao.53.00a148

    Article  Google Scholar 

  68. Zhu BL, Liu F, Li K et al (2017) Sputtering deposition of transparent conductive F-doped SnO2 (FTO) thin films in hydrogen-containing atmosphere. Ceram Int 43:10288–10298. https://doi.org/10.1016/j.ceramint.2017.05.058

    Article  CAS  Google Scholar 

  69. Tuna O, Selamet Y, Aygun G, Ozyuzer L (2010) High quality ITO thin films grown by dc and RF sputtering without oxygen. J Phys D Appl Phys 43:1–7. https://doi.org/10.1088/0022-3727/43/5/055402

    Article  Google Scholar 

  70. Chen Z, Li W, Li R et al (2013) Fabrication of highly transparent and conductive indium-tin oxide thin films with a high figure of merit via solution processing. Langmuir 29:13836–13842. https://doi.org/10.1021/la4033282

    Article  CAS  Google Scholar 

  71. Sunde TOL, Garskaite E, Otter B et al (2012) Transparent and conducting ITO thin films by spin coating of an aqueous precursor solution. J Mater Chem 22:15740–15749. https://doi.org/10.1039/c2jm32000b

    Article  CAS  Google Scholar 

  72. Aouaj MA, Diaz R, Belayachi A et al (2009) Comparative study of ITO and FTO thin films grown by spray pyrolysis. Mater Res Bull 44:1458–1461. https://doi.org/10.1016/j.materresbull.2009.02.019

    Article  CAS  Google Scholar 

  73. Elam JW, Baker DA, Martinson ABF et al (2008) Atomic layer deposition of indium tin oxide thin films using nonhalogenated precursors. J Phys Chem C 112:1938–1945. https://doi.org/10.1021/jp7097312

    Article  CAS  Google Scholar 

  74. Purwanto A, Widiyandari H, Jumari A (2012) Fabrication of high-performance fluorine doped-tin oxide film using flame-assisted spray deposition. Thin Solid Films 520:2092–2095. https://doi.org/10.1016/j.tsf.2011.08.041

    Article  CAS  Google Scholar 

  75. Chen HW, Lin CY, Lai YH et al (2011) Electrophoretic deposition of ZnO film and its compression for a plastic based flexible dye-sensitized solar cell. J Power Sources 196:4859–4864. https://doi.org/10.1016/j.jpowsour.2011.01.057

    Article  CAS  Google Scholar 

  76. Kim C, Kim S, Lee M (2013) Flexible dye-sensitized solar cell fabricated on plastic substrate by laser-detachment and press method. Appl Surf Sci 270:462–466. https://doi.org/10.1016/j.apsusc.2013.01.056

    Article  CAS  Google Scholar 

  77. Jihuai W, Yaoming X, Qunwei T et al (2012) A large-area light-weight dye-sensitized solar cell based on all titanium substrates with an efficiency of 6.69% outdoors. Adv Mater 24:1884–1888. https://doi.org/10.1002/adma.201200003

    Article  CAS  Google Scholar 

  78. Lee KM, Hsu YC, Ikegami M et al (2011) Co-sensitization promoted light harvesting for plastic dye-sensitized solar cells. J Power Sources 196:2416–2421. https://doi.org/10.1016/j.jpowsour.2010.10.041

    Article  CAS  Google Scholar 

  79. Hosseini A, Içli K, Özenbaş M, Erçelebi (2014) Fabrication and characterization of spin-coated TiO2 films. Energy Procedia 60:191–198. https://doi.org/10.1016/j.egypro.2014.12.332

  80. Subramanian A, Ho C-Y, Wang H (2013) Investigation of various photoanode structures on dye-sensitized solar cell performance using mixed-phase TiO2. J Alloys Compd 572:11–16. https://doi.org/10.1016/j.jallcom.2013.03.171

    Article  CAS  Google Scholar 

  81. Tripathi SK, Rani M, Singh N (2015) ZnO: Ag and TZO: Ag plasmonic nanocomposite for enhanced dye sensitized solar cell performance. Electrochim Acta 167:179–186. https://doi.org/10.1016/j.electacta.2015.02.245

    Article  CAS  Google Scholar 

  82. Bai Y, Yu H, Li Z et al (2012) In situ growth of a ZnO nanowire network within a TiO2 nanoparticle film for enhanced dye-sensitized solar cell performance. Adv Mater 24:5850–5856. https://doi.org/10.1002/adma.201201992

    Article  CAS  Google Scholar 

  83. Lei J, Liu S, Du K et al (2015) ZnO@TiO2 architectures for a high efficiency dye-sensitized solar cell. Electrochim Acta 171:66–71. https://doi.org/10.1016/j.electacta.2015.05.014

    Article  CAS  Google Scholar 

  84. Adachi M, Murata Y, Takao J et al (2004) Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism. J Am Chem Soc 126:14943–14949. https://doi.org/10.1021/ja048068s

    Article  CAS  Google Scholar 

  85. Sandquist C, McHale JL (2011) Improved efficiency of betanin-based dye-sensitized solar cells. J Photochem Photobiol A Chem 221:90–97. https://doi.org/10.1016/j.jphotochem.2011.04.030

    Article  CAS  Google Scholar 

  86. Arunachalam A, Dhanapandian S, Manoharan C, Sridhar R (2015) Characterization of sprayed TiO2 on ITO substrates for solar cell applications. Spectrochim Acta—Part A Mol Biomol Spectrosc 149:904–912. https://doi.org/10.1016/j.saa.2015.05.014

    Article  CAS  Google Scholar 

  87. Zulkifili ANB, Kento T, Daiki M, Fujiki A (2015) The basic research on the dye-sensitized solar cells (DSSC). J Clean Energy Technol 3:382–387. https://doi.org/10.7763/JOCET.2015.V3.228

    Article  Google Scholar 

  88. Chung I, Lee B, He J et al (2012) All-solid-state dye-sensitized solar cells with high efficiency. Nature 485:486–489. https://doi.org/10.1038/nature11067

    Article  CAS  Google Scholar 

  89. Hara K, Koumura N (2019) Organic dyes for efficient and stable dye-sensitized solar cells. Mater Matters 4:1–5

    Google Scholar 

  90. Hara K, Kurashige M, Dan-Oh Y et al (2003) Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New J Chem 27:783–785. https://doi.org/10.1039/b300694h

    Article  CAS  Google Scholar 

  91. Horiuchi T, Miura H, Uchida S (2003) Highly-efficient metal-free organic dyes for dye-sensitized solar cells. Chem Commun 3036–3037. https://doi.org/10.1039/b307819a

  92. Hwang S, Lee JH, Park C et al (2007) A highly efficient organic sensitizer for dye-sensitized solar cells. Chem Commun 4887–4889. https://doi.org/10.1039/b709859f

  93. Zhou H, Ji JM, Kang SH et al (2019) Molecular design and synthesis of D-π-A structured porphyrin dyes with various acceptor units for dye-sensitized solar cells. J Mater Chem C 7:2843–2852. https://doi.org/10.1039/c8tc05283b

    Article  CAS  Google Scholar 

  94. Boschloo G, Hagfeldt A, Spectus CON (2009) Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc Chem Res 42:1819–1826. https://doi.org/10.1021/ar900138m

    Article  CAS  Google Scholar 

  95. Kay A, Grätzel M (1996) Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol Energy Mater Sol Cells 44:99–117. https://doi.org/10.1016/0927-0248(96)00063-3

    Article  CAS  Google Scholar 

  96. Lee KS, Lee HK, Wang DH et al (2010) Dye-sensitized solar cells with Pt- and TCO-free counter electrodes. Chem Commun 46:4505–4507. https://doi.org/10.1039/c0cc00432d

    Article  CAS  Google Scholar 

  97. Arbab AA, Peerzada MH, Sahito IA, Jeong SH (2017) A complete carbon counter electrode for high performance quasi solid state dye sensitized solar cell. J Power Sources 343:412–423. https://doi.org/10.1016/j.jpowsour.2017.01.070

    Article  CAS  Google Scholar 

  98. Li ZY, Shaheer Akhtar M, Hee Kuk J et al (2012) Graphene application as a counter electrode material for dye-sensitized solar cell. Mater Lett 86:96–99. https://doi.org/10.1016/j.matlet.2012.07.006

    Article  CAS  Google Scholar 

  99. Liu CY, Huang KC, Chung PH et al (2012) Graphene-modified polyaniline as the catalyst material for the counter electrode of a dye-sensitized solar cell. J Power Sources 217:152–157. https://doi.org/10.1016/j.jpowsour.2012.05.091

    Article  CAS  Google Scholar 

  100. Wang M, Tang Q, Chen H, He B (2014) Counter electrodes from polyaniline−carbon nanotube complex/graphene oxide multilayers for dye-sensitized solar cell application. Electrochim Acta 125:510–515. https://doi.org/10.1016/j.electacta.2014.01.089

    Article  CAS  Google Scholar 

  101. Park J-Y, Hwang K-J, Lee J-W, Lee I-H (2011) Fabrication and characterization of electrospun Ag doped TiO2 nanofibers for photocatalytic reaction. J Mater Sci 46:7240–7246. https://doi.org/10.1007/s10853-011-5683-5

    Article  CAS  Google Scholar 

  102. Tripathi AK, Mathpal MC, Kumar P et al (2015) Structural, optical and photoconductivity of Sn and Mn doped TiO2 nanoparticles. J Alloys Compd 622:37–47. https://doi.org/10.1016/j.jallcom.2014.09.218

    Article  CAS  Google Scholar 

  103. Tripathi AK, Mathpal MC, Kumar P et al (2014) Synthesis based structural and optical behavior of anatase TiO2 nanoparticles. Mater Sci Semicond Process 23:136–143. https://doi.org/10.1016/j.mssp.2014.02.041

    Article  CAS  Google Scholar 

  104. Mathpal MC, Kumar P, Balasubramaniyan R et al (2014) Ag/TiO2/graphene stacking for plasmonic metamaterial-based transparent semiconducting thin films. Mater Lett 128:306–309. https://doi.org/10.1016/j.matlet.2014.04.169

    Article  CAS  Google Scholar 

  105. Mathpal MC, Tripathi AK, Kumar P et al (2014) Polymorphic transformations and optical properties of graphene-based Ag-doped titania nanostructures. Phys Chem Chem Phys 16:23874–23883. https://doi.org/10.1039/c4cp02982h

    Article  CAS  Google Scholar 

  106. Ghoderao KP, Jamble SN, Kale RB (2018) Influence of reaction temperature on hydrothermally grown TiO2 nanorods and their performance in dye-sensitized solar cells. Superlattices Microstruct 124:121–130. https://doi.org/10.1016/j.spmi.2018.09.038

    Article  CAS  Google Scholar 

  107. Jo HJ, Nam JE, Heo H et al (2018) Mechanistic and time resolved single-photon counting analysis for light harvesting characteristics depending on the adsorption mode of organic sensitizers in DSSCs. J Phys Chem C 122:995–1002. https://doi.org/10.1021/acs.jpcc.7b05376

    Article  CAS  Google Scholar 

  108. Nazeeruddin MK, Kay A, Rodicio I et al (1993) Conversion of light to electricity by cis-X2Bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes. J Am Chem Soc 115:6382–6390. https://doi.org/10.1021/ja00067a063

    Article  CAS  Google Scholar 

  109. Cells NS, Gra M (2000) Perspectives for dye-sensitized nanocrystalline solar cells. 185:171–185. https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1%3c171:AID-PIP300%3e3.0.CO;2-U

    Article  Google Scholar 

  110. Guo W, Xu C, Wang X et al (2012) Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells. J Am Chem Soc 134:4437–4441. https://doi.org/10.1021/ja2120585

    Article  CAS  Google Scholar 

  111. Liao JY, Lei BX, Bin Kuang D, Su CY (2011) Tri-functional hierarchical TiO2 spheres consisting of anatase nanorods and nanoparticles for high efficiency dye-sensitized solar cells. Energy Environ Sci 4:4079–4085. https://doi.org/10.1039/c1ee01574e

    Article  CAS  Google Scholar 

  112. Rho WY, Kim HS, Chung WJ et al (2018) Enhancement of power conversion efficiency with TiO2 nanoparticles/nanotubes-silver nanoparticles composites in dye-sensitized solar cells. Appl Surf Sci 429:23–28. https://doi.org/10.1016/j.apsusc.2017.06.258

    Article  CAS  Google Scholar 

  113. Kim YJ, Lee MH, Kim HJ et al (2009) Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv Mater 21:3668–3673. https://doi.org/10.1002/adma.200900294

    Article  CAS  Google Scholar 

  114. Jiang C, Leung MY, Koh WL, Li Y (2011) Influences of deposition and post-annealing temperatures on properties of TiO2 blocking layer prepared by spray pyrolysis for solid-state dye-sensitized solar cells. Thin Solid Films 519:7850–7854. https://doi.org/10.1016/j.tsf.2011.06.012

    Article  CAS  Google Scholar 

  115. Chang H, Chen C-H, Kao M-J et al (2013) Photoelectrode thin film of dye-sensitized solar cell fabricated by anodizing method and spin coating and electrochemical impedance properties of DSSC. Appl Surf Sci 275:252–257. https://doi.org/10.1016/j.apsusc.2012.12.132

    Article  CAS  Google Scholar 

  116. Lee Y, Kang M (2010) The optical properties of nanoporous structured titanium dioxide and the photovoltaic efficiency on DSSC. Mater Chem Phys 122:284–289. https://doi.org/10.1016/j.matchemphys.2010.02.050

    Article  CAS  Google Scholar 

  117. Yu Y, Wu K, Wang D (2011) Dye-sensitized solar cells with modified TiO2 surface chemical states: The role of Ti3. Appl Phys Lett 99:3–6. https://doi.org/10.1063/1.3660711

    Article  CAS  Google Scholar 

  118. Al-Attafi K, Jawdat FH, Qutaish H et al (2019) Cubic aggregates of Zn2SnO4 nanoparticles and their application in dye-sensitized solar cells. Nano Energy 57:202–213. https://doi.org/10.1016/j.nanoen.2018.12.039

    Article  CAS  Google Scholar 

  119. Alkuam E, Badradeen E, Guisbiers G (2018) Influence of CdS morphology on the efficiency of dye-sensitized solar cells. ACS Omega 3:13433–13441. https://doi.org/10.1021/acsomega.8b01631

    Article  CAS  Google Scholar 

  120. Lee Y, Chae J, Kang M (2010) Comparison of the photovoltaic efficiency on DSSC for nanometer sized TiO2 using a conventional sol-gel and solvothermal methods. J Ind Eng Chem 16:609–614. https://doi.org/10.1016/j.jiec.2010.03.008

    Article  CAS  Google Scholar 

  121. Dhas V, Muduli S, Agarkar S et al (2011) Enhanced DSSC performance with high surface area thin anatase TiO2 nanoleaves. Sol Energy 85:1213–1219. https://doi.org/10.1016/j.solener.2011.02.029

    Article  CAS  Google Scholar 

  122. Dissanayake MAKL, Sarangika HNM, Senadeera GKR et al (2017) Application of a nanostructured, tri-layer TiO2 photoanode for efficiency enhancement in quasi-solid electrolyte-based dye-sensitized solar cells. J Appl Electrochem 47:1239–1249. https://doi.org/10.1007/s10800-017-1116-8

    Article  CAS  Google Scholar 

  123. Yang X, Zhao L, Lv K et al (2019) Enhanced efficiency for dye-sensitized solar cells with ZrO2 as a barrier layer on TiO2 nanofibers. Appl Surf Sci 469:821–828. https://doi.org/10.1016/j.apsusc.2018.10.242

    Article  CAS  Google Scholar 

  124. Han Z, Zhang J, Cao W (2012) A new anode material of N/TiO2 nanobelts in DSSC. Mater Lett 84:34–37. https://doi.org/10.1016/j.matlet.2012.06.027

    Article  CAS  Google Scholar 

  125. Han Z, Zhang J, Yu Y, Cao W (2012) A new anode material of silver photo-deposition on TiO2 in DSSC. Mater Lett 70:193–196. https://doi.org/10.1016/j.matlet.2011.11.120

    Article  CAS  Google Scholar 

  126. Dong Z, Lai X, Halpert JE et al (2012) Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Adv Mater 24:1046–1049. https://doi.org/10.1002/adma.201104626

    Article  CAS  Google Scholar 

  127. Sarvari N, Mohammadi MR (2018) Enhanced electron collection efficiency of nanostructured dye-sensitized solar cells by incorporating TiO2 cubes. J Am Ceram Soc 101:293–306. https://doi.org/10.1111/jace.15184

    Article  CAS  Google Scholar 

  128. Ko KH, Lee YC, Jung YJ (2005) Enhanced efficiency of dye-sensitized TiO2 solar cells (DSSC) by doping of metal ions. J Colloid Interface Sci 283:482–487. https://doi.org/10.1016/j.jcis.2004.09.009

    Article  CAS  Google Scholar 

  129. Han L, Islam A, Chen H et al (2012) High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy Environ Sci 5:6057–6060. https://doi.org/10.1039/c2ee03418b

    Article  CAS  Google Scholar 

  130. Yella A, Lee HW, Tsao HN et al (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12% efficiency. Science 334(80):629–634. https://doi.org/10.1126/science.1209688

    Article  CAS  Google Scholar 

  131. Freitag M, Giordano F, Yang W et al (2016) Copper phenanthroline as a fast and high-performance redox mediator for dye-sensitized solar cells. J Phys Chem C 120:9595–9603. https://doi.org/10.1021/acs.jpcc.6b01658

    Article  CAS  Google Scholar 

  132. Gu P, Yang D, Zhu X et al (2017) Influence of electrolyte proportion on the performance of dye-sensitized solar cells. AIP Adv 7:105219 (1–8). https://doi.org/10.1063/1.5000564

    Article  Google Scholar 

  133. Kuo H-P, Wu C-T (2013) Speed up dye-sensitized solar cell fabrication by rapid dye solution droplets bombardment. Sol Energy Mater Sol Cells 120:81–86. https://doi.org/10.1016/j.solmat.2013.08.016

    Article  CAS  Google Scholar 

  134. Antila LJ, Myllyperkio P, Mustalahti S et al (2014) Injection and ultrafast regeneration in dye-sensitized solar cells. J Phys Chem C 118:7772–7780. https://doi.org/10.1021/jp4124277

    Article  CAS  Google Scholar 

  135. Hao F, Jiao X, Li J, Lin H (2013) Solvent dipole modulation of conduction band edge shift and charge recombination in robust dye-sensitized solar cells. Nanoscale 5:726–733. https://doi.org/10.1039/c2nr32946h

    Article  CAS  Google Scholar 

  136. Kakiage K, Aoyama Y, Yano T et al (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51:15894–15897. https://doi.org/10.1039/c5cc06759f

    Article  CAS  Google Scholar 

  137. Sahito IA, Ahmed F, Khatri Z et al (2017) Enhanced ionic mobility and increased efficiency of dye-sensitized solar cell by adding lithium chloride in poly(vinylidene fluoride) nanofiber as electrolyte medium. J Mater Sci 52:13920–13929. https://doi.org/10.1007/s10853-017-1473-z

    Article  CAS  Google Scholar 

  138. Wei W, Sun K, Hu YH (2016) An efficient counter electrode material for dye-sensitized solar cells—flower-structured 1T metallic phase MoS2. J Mater Chem A 4:12398–12401. https://doi.org/10.1039/c6ta04743b

    Article  CAS  Google Scholar 

  139. Liu J, Tang Q, He B, Yu L (2015) Cost-effective, transparent iron selenide nanoporous alloy counter electrode for bifacial dye-sensitized solar cell. J Power Sources 282:79–86. https://doi.org/10.1016/j.jpowsour.2015.02.045

    Article  CAS  Google Scholar 

  140. Gao Z, Wang L, Chang J et al (2017) CoNi alloy incorporated, N doped porous carbon as efficient counter electrode for dye-sensitized solar cell. J Power Sources 348:158–167. https://doi.org/10.1016/j.jpowsour.2017.03.009

    Article  CAS  Google Scholar 

  141. Hou W, Xiao Y, Han G (2018) The dye-sensitized solar cells based on the interconnected ternary cobalt diindium sulfide nanosheet array counter electrode. Mater Res Bull 107:204–212. https://doi.org/10.1016/j.materresbull.2018.07.040

    Article  CAS  Google Scholar 

  142. Wu MS, Lin JC (2019) Dual doping of mesoporous carbon pillars with oxygen and sulfur as counter electrodes for iodide/triiodide redox mediated dye-sensitized solar cells. Appl Surf Sci 471:455–461. https://doi.org/10.1016/j.apsusc.2018.12.043

    Article  CAS  Google Scholar 

  143. Wu J, Tang Z, Huang Y et al (2014) A dye-sensitized solar cell based on platinum nanotube counter electrode with efficiency of 9.05%. J Power Sources 257:84–89. https://doi.org/10.1016/j.jpowsour.2014.01.090

    Article  CAS  Google Scholar 

  144. Zhang S, Ji C, Bian Z et al (2011) Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes. Nano Lett 11:3383–3387. https://doi.org/10.1021/nl201790w

    Article  CAS  Google Scholar 

  145. Li P, Zhang Y, Yang X et al (2017) Alloyed PtNi counter electrodes for high-performance dye-sensitized solar cell applications. J Alloys Compd 725:1272–1281. https://doi.org/10.1016/j.jallcom.2017.07.266

    Article  CAS  Google Scholar 

  146. Cheng C-K, Lin J-Y, Huang K-C et al (2017) Enhanced efficiency of dye-sensitized solar counter electrodes consisting of two-dimensional nanostructural molybdenum disulfide nanosheets supported Pt nanoparticles. Coatings 7:167. https://doi.org/10.3390/coatings7100167

    Article  CAS  Google Scholar 

  147. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105 (1–8)

    Article  Google Scholar 

  148. Walters RJ, Van Loon RVA, Brunets I et al (2009) A silicon-based electrical source for surface plasmon polaritons. IEEE Int Conf Gr IV Photonics GFP 9:74–76. https://doi.org/10.1109/GROUP4.2009.5338358

    Article  Google Scholar 

  149. Gramotnev dmitri K (2010) Bozhevolnyi sergey I plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    Article  CAS  Google Scholar 

  150. Garcia MA (2011) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D Appl Phys 44:283001. https://doi.org/10.1088/0022-3727/44/28/283001

    Article  Google Scholar 

  151. Mokkapati S, Beck FJ, de Waele R et al (2011) Resonant nano-antennas for light trapping in plasmonic solar cells. J Phys D Appl Phys 44:185101. https://doi.org/10.1088/0022-3727/44/18/185101

    Article  CAS  Google Scholar 

  152. Zia R, Schuller JA, Chandran A, Brongersma ML (2006) Plasmonics: the next chip-scale technology. Mater Today 9:20–27. https://doi.org/10.1016/S1369-7021(06)71572-3

    Article  CAS  Google Scholar 

  153. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193. https://doi.org/10.1126/science.1114849

    Article  CAS  Google Scholar 

  154. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793–800

    Article  CAS  Google Scholar 

  155. Zhao Y, Sheng M-Y, Zhou W-X et al (2012) A solar photovoltaic system with ideal efficiency close to the theoretical limit. Opt Express 20:A28–A38

    Article  CAS  Google Scholar 

  156. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–13. https://doi.org/10.1038/nmat2629

    Article  CAS  Google Scholar 

  157. Dhonde M, Sahu K, Murty VVS et al (2017) Surface plasmon resonance effect of Cu nanoparticles in a dye sensitized solar cell. Electrochim Acta 249:89–95. https://doi.org/10.1016/j.electacta.2017.07.187

    Article  CAS  Google Scholar 

  158. Qi J, Dang X, Hammond PT, Belcher AM (2011) Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure. ACS Nano 5:7108–7116. https://doi.org/10.1021/nn201808g

    Article  CAS  Google Scholar 

  159. Brown MD, Suteewong T, Kumar RSS et al (2011) Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Nano Lett 11:438–445. https://doi.org/10.1021/nl1031106

    Article  CAS  Google Scholar 

  160. Song DH, Kim HY, Kim HS et al (2017) Preparation of plasmonic monolayer with Ag and Au nanoparticles for dye-sensitized solar cells. Chem Phys Lett 687:152–157. https://doi.org/10.1016/j.cplett.2017.08.051

    Article  CAS  Google Scholar 

  161. Tarwal NL, Devan RS, Ma YR et al (2012) Spray deposited localized surface plasmonic Au–ZnO nanocomposites for solar cell application. Electrochim Acta 72:32–39. https://doi.org/10.1016/j.electacta.2012.03.135

    Article  CAS  Google Scholar 

  162. Nahm C, Choi H, Kim J et al (2011) The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells. Appl Phys Lett 99:253107. https://doi.org/10.1063/1.3671087

    Article  CAS  Google Scholar 

  163. Li P-C, Zhao Y, Alù A, Yu ET (2011) Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface. Appl Phys Lett 99:221106. https://doi.org/10.1063/1.3664634

    Article  CAS  Google Scholar 

  164. Chen J, Guo M, Su H et al (2018) Improving the efficiency of dye-sensitized solar cell via tuning the Au plasmons inlaid TiO2 nanotube array photoanode. J Appl Electrochem 48:1139–1149. https://doi.org/10.1007/s10800-018-1220-4

    Article  CAS  Google Scholar 

  165. Muduli S, Game O, Dhas V et al (2012) TiO2–Au plasmonic nanocomposite for enhanced dye-sensitized solar cell (DSSC) performance. Sol Energy 86:1428–1434. https://doi.org/10.1016/j.solener.2012.02.002

    Article  CAS  Google Scholar 

  166. Ran H, Fan J, Zhang X et al (2018) Enhanced performances of dye-sensitized solar cells based on Au–TiO2 and Ag–TiO2 plasmonic hybrid nanocomposites. Appl Surf Sci 430:415–423. https://doi.org/10.1016/j.apsusc.2017.07.107

    Article  CAS  Google Scholar 

  167. Suresh S, Unni GE, Satyanarayana M et al (2018) Plasmonic Ag@Nb2O5 surface passivation layer on quantum confined SnO2 films for high current dye-sensitized solar cell applications. Electrochim Acta 289:1–12. https://doi.org/10.1016/j.electacta.2018.08.078

    Article  CAS  Google Scholar 

  168. Li M, Yuan N, Tang Y et al (2019) Performance optimization of dye-sensitized solar cells by gradient-ascent architecture of SiO2@Au@TiO2 microspheres embedded with Au nanoparticles. J Mater Sci Technol 35:604–609. https://doi.org/10.1016/j.jmst.2018.09.030

    Article  CAS  Google Scholar 

  169. Wu MS, Yang RS (2018) Post-treatment of porous titanium dioxide film with plasmonic compact layer as a photoanode for enhanced dye-sensitized solar cells. J Alloys Compd 740:695–702. https://doi.org/10.1016/j.jallcom.2018.01.032

    Article  CAS  Google Scholar 

  170. Nattestad A, Mozer AJ, Fischer MKR et al (2010) Highly efficient photocathodes for dye-sensitized tandem solar cells. Nat Mater 9:31–35. https://doi.org/10.1038/nmat2588

    Article  CAS  Google Scholar 

  171. Yanagida M, Onozawa-Komatsuzaki N, Kurashige M et al (2010) Optimization of tandem-structured dye-sensitized solar cell. Sol Energy Mater Sol Cells 94:297–302. https://doi.org/10.1016/j.solmat.2009.10.002

    Article  CAS  Google Scholar 

  172. Yamaguchi T, Uchida Y, Agatsuma S, Arakawa H (2009) Series-connected tandem dye-sensitized solar cell for improving efficiency to more than 10%. Sol Energy Mater Sol Cells 93:733–736. https://doi.org/10.1016/j.solmat.2008.09.021

    Article  CAS  Google Scholar 

  173. Chae SY, Park SJ, Joo OS et al (2016) Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells. Sci Rep 6:1–8. https://doi.org/10.1038/srep30868

    Article  CAS  Google Scholar 

  174. Moon SH, Park SJ, Kim SH et al (2015) Monolithic DSSC/CIGS tandem solar cell fabricated by a solution process. Sci Rep 5:1–6. https://doi.org/10.1038/srep08970

    Article  CAS  Google Scholar 

  175. Kwon J, Im MJ, Kim CU et al (2016) Two-terminal DSSC/silicon tandem solar cells exceeding 18% efficiency. Energy Environ Sci 9:3657–3665. https://doi.org/10.1039/c6ee02296k

    Article  CAS  Google Scholar 

  176. Hao Y, Yang W, Zhang L et al (2016) A small electron donor in cobalt complex electrolyte significantly improves efficiency in dye-sensitized solar cells. Nat Commun 7:1–8. https://doi.org/10.1038/ncomms13934

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohan Chandra Mathpal or Promod Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mathpal, M.C., Kumar, P., Aragón, F.H., Soler, M.A.G., Swart, H.C. (2020). Basic Concepts, Engineering, and Advances in Dye-Sensitized Solar Cells. In: Sharma, S., Ali, K. (eds) Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-030-36354-3_8

Download citation

Publish with us

Policies and ethics