Skip to main content

Recent Advances in Solar Cells

  • Chapter
  • First Online:
Solar Cells

Abstract

The last years the growth of the global population has resulted in high demand for electricity consumption. Photovoltaic devices have shown a big potential to obtain energy power from solar irradiation when compared with other sources. Currently, photovoltaic silicon-based technologies are the most used around the world, but its high cost is still a big problem for global consumption. A short approach to fundamental concepts to inorganic and organic solar cells will be described in this chapter. Moreover, it will be showing new models of solar cells as well as advances and challenges in the development of inorganic and organic solar cells with high efficiency and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dudley B (2018) BP Statistical review of world energy 2018. In: Energy economic, Centre for energy economics research and policy. British Petroleum, Available via https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/electricity.html, 5 Jan 2018

  2. Fritts CE (1883) On a new form of selenium photocell. Am J Sci 26:465

    Article  Google Scholar 

  3. Chapin DM, Fuller CS, Pearson GL (1954) A new silicon pn junction photocell for converting solar radiation into electrical power. J Appl Phys 25(5):676–677

    Article  CAS  Google Scholar 

  4. Reynolds DC, Leies G, Antes LL, Marburger RE (1954) Photovoltaic effect in cadmium sulfide. Phys Rev 96(2):533–534

    Article  CAS  Google Scholar 

  5. Hegedus S, Luque A (2011) Achievements and challenges of solar electricity from photovoltaics. In: Luque A (ed) Handbook of photovoltaic science and engineering, 2nd edn. Wiley, United Kingdom

    Google Scholar 

  6. Kong L, Wang J, Luo T, Meng F, Chen X, Li M, Liu J (2010) Novel pyrenehexafluoroisopropanol derivative-decorated single-walled carbon nanotubes for detection of nerve agents by strong hydrogen-bonding interaction. Analyst 135(2):368–374

    Article  CAS  Google Scholar 

  7. Nayak PK, Mahesh S, Snaith HJ, Cahen D, (2019) Photovoltaic solar cell technologies: analysing the state of the art. Nat Rev Mater 4(4):269–285

    Article  CAS  Google Scholar 

  8. (a) Pandey AK, Tyagi VV, Selvaraj JAL, Rahim NA, Tyagi SK (2016) Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renew Sust Energ Rev 53:859–884; (b) Dubey A, Adhikari N, Mabrouk S, Wu F, Chen K, Yang S, Qiao Q (2018) A strategic review on processing routes towards highly efficient perovskite solar cells. J Mater Chem A6(6):2406–2431; (c) Xu L, Ho C-L, Liu L, Wong W-Y (2018) Molecular/polymeric metallaynes and related molecules: solar cell materials and devices. Coord Chem Rev 373:233–257

    Google Scholar 

  9. Sampaio PGV, González MOA (2017) Photovoltaic solar energy: conceptual framework. Renew Sust Energ Rev 74:590–601

    Article  Google Scholar 

  10. (a) Easton RL, Votaw MJ (1959) Vanguard I, Satellite IGY (1958 Beta) Rev Sci Instrum 30:(2) 70–75; (b) Hegedus S, Luque A (2011) Achievements and challenges of solar electricity from photovoltaics. In: Luque A (ed) Handbook of photovoltaic science and engineering, 2nd. Wiley, Chennai

    Google Scholar 

  11. Jenny DA, Loferski JJ, Rappaport P (1956) Photovoltaic effect in GaAs p-n junctions and solar energy conversion. Phys Rev 101(3):1208–1209

    Article  CAS  Google Scholar 

  12. Cusano DA (1963) CdTe solar cells and photovoltaic heterojunctions in II–VI compounds. Solid State Electron 6:(3) 217–232

    Article  CAS  Google Scholar 

  13. (a) Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Solar cell efficiency tables (version 46). Prog Photovolt Res Appl 23(7):805–812; (b) Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, Ho-Baillie AWY (2019) Solar cell efficiency tables (Version 53). Prog Photovolt Res Appl 27(1):3–12

    Google Scholar 

  14. He X, Perovskite photovoltaics 2018–2028. https://www.idtechex.com/en/research-report/perovskite-photovoltaics-2018-2028/541. 10 May 2019

  15. (a) Yamaguchi M, Lee KH, Araki K, Kojima N (2018) A review of recent progress in heterogeneous silicon tandem solar cells. J Phys D-Appl Phys 51(133002):13; (b) Miles RW, Zoppi G, Forbes I (2007) Inorganic photovoltaic cells. Mater Today10(11):20–27

    Google Scholar 

  16. Moon S, Kim K, Kim Y, Heo J, Lee J (2016) Highly efficient single-junction GaAs thin-film solar cell on flexible substrate. Sci Rep 6:30107

    Article  CAS  Google Scholar 

  17. Bauhuis GJ, Mulder P, Schermer JJ, Haverkamp EJ, Deelen JV, Larsen PK (2005) High efficiency thin film GaAs solar cells with improved radiation hardness. In: 20th European photovoltaic solar energy conference, Barcelona, Spain, pp 468–471

    Google Scholar 

  18. Kayes BM, Nie H, Twist R, Spruytte SG, Reinhardt F, Kizilyalli I C, Higashi GS (2011) 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In: Proceedings of the 37th IEEE photovoltaic specialists conference, California, USA

    Google Scholar 

  19. (a) Aghazada S, Nazeeruddin MK (2018) Ruthenium complexes as sensitizers in dye-sensitized solar cells. Inorganics 6(2):52; (b) Qin Y, Peng Q (2012) Ruthenium sensitizers and their applications in dye-sensitized solar cells. Int J Photoenergy (ID 291579); (c) Huang Y, Chen W-C, Zhang X-X, Ghadari R, Fang X-Q, Yu T, Kong F-T (2018) Ruthenium complexes as sensitizers with phenyl-based bipyridine anchoring ligands for efficient dye-sensitized solar cells. J Mater Chem C6(35):9445–9452; (d) Medved’ko AV, Ivanov VK, Kiskin MA et al (2017) The design and synthesis of thiophene-based ruthenium(II) complexes as promising sensitizers for dye-sensitized solar cells. Dyes Pigm 140:169–178; (e) Li C, Liu M, Pschirer NG, Baumgarten M, Müllen K (2010) Polyphenylene-based materials for organic photovoltaics. Chem Rev 110(11):6817–6855

    Google Scholar 

  20. Seok SI, Grätzel M, Park N-G (2018) Methodologies toward highly efficient perovskite solar cells. Small 14(20):1704177

    Article  CAS  Google Scholar 

  21. Robson KCD, Koivisto BD, Yella A et al (2011) Design and development of functionalized cyclometalated ruthenium chromophores for light-harvesting applications. Inorg Chem 50(12):5494–5508

    Article  CAS  Google Scholar 

  22. Paek S, Baik C, Kang M-S, Kang H, Ko J (2010) New type of ruthenium sensitizers with a triazole moiety as a bridging group. J Organomet Chem 695(6):821–826

    Article  CAS  Google Scholar 

  23. (a) You P, Tang G, Yan F (2019) Two-dimensional materials in perovskite solar cells. Mater Today Energy 11:128–158; (b) Nakazaki J, Segawa H (2018) Evolution of organometal halide solar cells. J Photoch Photobio C35:74–107; (c) Konstantakou M, Stergiopoulos T (2017) A critical review on tin halide perovskite solar cells. J Mater Chem A5(23):11518–11549; (d) Giustino F, Snaith H J (2016) Toward lead-free perovskite solar cells. ACS Energy Lett 1(6):1233–1240; (e) Editorial (2019) A decade of perovskite photovoltaics. Nat Energy 4(1):1–1; (f) Meng L, Wei Q, Yang Z et al (2020) Improved perovskite solar cell efficiency by tuning the colloidal size and free ion concentration in precursor solution using formic acid additive. J. Energy Chem 41:43–51

    Google Scholar 

  24. Green MA, Ho-Baillie A (2017) Perovskite solar cells: the birth of a new era in photovoltaics. ACS Energy Lett 2(4):822–830

    Article  CAS  Google Scholar 

  25. Li D, Meng Q (2019) Interfacial engineering to improve the stability of perovskite solar cells. In: International conference on perovskite photonics and optoelectronics, Israel

    Google Scholar 

  26. (a) Li Y, Ji L, Liu R et al (2018) A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells. J. Mater. Chem. A6:(27) 12842–12875; (b) Jamal MS, Bashar MS, Hasan AKM et al (2018) Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: a review. Renew Sustain Energy Rev 98:469–488

    Google Scholar 

  27. Deepa M, Salado M, Calio L, Kazim S, Shivaprasad SM, Ahmad S (2017) Cesium power: low Cs+ levels impart stability to perovskite solar cells. Phys Chem Chem Phys 19(5):4069–4077

    Article  CAS  Google Scholar 

  28. Cho KT, Paek S, Grancini G, Roldán-Carmona C, Gao P, Lee Y, Nazeeruddin MK (2017) Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ Sci 10(2):621–627

    Article  CAS  Google Scholar 

  29. Wang Z, McMeekin DP, Sakai N et al (2017) Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers. Adv Mater 29(5):1604186

    Article  CAS  Google Scholar 

  30. Wang JT-W, Wang Z, Pathak S et al (2016) Efficient perovskite solar cells by metal ion doping. Energy Environ Sci 9(9):2892–2901

    Article  CAS  Google Scholar 

  31. Yang S, Fu W, Zhang Z, Chen H, Li C-Z (2017) Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J Mater Chem A5(23):11462–11482

    Article  CAS  Google Scholar 

  32. Zhang Y, Grancini G, Feng Y, Asiri AM, Nazeeruddin MK (2017) Optimization of stable quasi-cubic FAxMA1−xPbI3 perovskite structure for solar cells with efficiency beyond 20%. ACS Energy Lett. 2(4):802–806

    Article  CAS  Google Scholar 

  33. Jodlowski AD, Roldán-Carmona C, Grancini G et al (2017) Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nature Energy 2(12):972–979

    Google Scholar 

  34. (a) Chu Z, Yang M, Schulz P et al (2017) Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites. Nat Commun 8(1):2230; (b) Yun JS, Ho-Baillie A, Huang S et al (2015) Benefit of grain boundaries in organic–inorganic halide planar perovskite solar cells. J Phys Chem Lett 6(5):875–880

    Google Scholar 

  35. Wang L-Y, Deng L-L, Wang X et al (2017) Di-isopropyl ether assisted crystallization of organic–inorganic perovskites for efficient and reproducible perovskite solar cells. Nanoscale 9(45):17893–17901

    Article  CAS  Google Scholar 

  36. (a) Chen P, Wang Y, Wang M, Zhang X, Wang L, Liu Y (2015) TiO2 nanoparticle-based electron transport layer with improved wettability for efficient planar-heterojunction perovskite solar cell. J Energy Chem 24(6):717–721; (b) Mori S, Yanagida S (2007) TiO2-based dye-sensitized solar cell. In: Soga T (ed) Nanostructured materials for solar energy conversion. Elsevier Science; (c) Mohamad Noh MF, Teh CH, Daik R et al (2018) The architecture of the electron transport layer for a perovskite solar cell. J Mater Chem C6(4):682–712

    Google Scholar 

  37. Urieta-Mora J, García-Benito I, Molina-Ontoria A, Martín N (2018) Hole transporting materials for perovskite solar cells: a chemical approach. Chem Soc Rev 47(23):8541–8571

    Article  CAS  Google Scholar 

  38. Sulaeman U, Zuhairi Abdullah A (2017) The way forward for the modification of dye-sensitized solar cell towards better power conversion efficiency. Renew Sust Energ Rev 74:438–452

    Article  CAS  Google Scholar 

  39. (a) Li Y, Zhu J, Huang Y et al (2015) Mesoporous SnO2 nanoparticle films as electron-transporting material in perovskite solar cells. RSC Adv 5(36):28424–28429; (b) Chen Y, Meng Q, Zhang L, Han C, Gao H, Zhang Y,Yan H, (2019) SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress. J Energy Chem 35:144–167; (c) Xiong L, Guo Y, Wen J, Liu H, Yang G, Qin P, Fang G (2018) Review on the application of SnO2 in perovskite solar cells. Adv Funct Mater 28(35):1802757

    Google Scholar 

  40. Mahmood K, Swain BS, Kirmani AR, Amassian A (2015) Highly efficient perovskite solar cells based on a nanostructured WO3–TiO2 core–shell electron transporting material. J Mater Chem A3(17):9051–9057

    Article  CAS  Google Scholar 

  41. (a) Anwar F, Mahbub R, Satter SS, Ullah S M (2017) Effect of different HTM layers and electrical parameters on ZnO nanorod-based lead-free perovskite solar cell for high-efficiency performance. Int J Photoenergy (ID 9846310) 9; (b) Zhang P, Wu J, Zhang T et al (2018) Perovskite solar cells with ZnO electron-transporting materials. Adv Mater 30(3):1703737; (c) Rong P, Ren S, Yu Q (2019) Fabrications and applications of ZnO nanomaterials in flexible functional devices-a review. Crit Rev Anal Chem 49(4):336–349; (d) Luo J, Wang Y, Zhang Q (2018) Progress in perovskite solar cells based on ZnO nanostructures. Sol Energy 163:289–306

    Google Scholar 

  42. Son D-Y, Im J-H, Kim H-S, Park N-G (2014) 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J Phys Chem C 118(30):16567–16573

    Article  CAS  Google Scholar 

  43. Xu X, Zhang H, Shi J, Dong J, Luo Y, Li D, Meng Q (2015) Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer. J Mater Chem A3(38):19288–19293

    Article  CAS  Google Scholar 

  44. Li S, Zhang P, Chen H et al (2017) Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods. J Power Sources 342:990–997

    Article  CAS  Google Scholar 

  45. Chang C-Y, Lee K-T, Huang W-K, Siao H-Y, Chang Y-C (2015) High-performance, air-stable, low-temperature processed semitransparent perovskite solar cells enabled by atomic layer deposition. Chem Mater 27(14):5122–5130

    Article  CAS  Google Scholar 

  46. Correa Baena JP, Steier L, Tress W et al (2015) Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ Sci 8(10):2928–2934

    Article  CAS  Google Scholar 

  47. Song S, Kang G, Pyeon L, Lim C, Lee G-Y, Park T,Choi J, (2017) Systematically optimized bilayered electron transport layer for highly efficient planar perovskite solar cells (η = 21.1%). ACS Energy Lett 2(12):2667–2673

    Google Scholar 

  48. Jiang Q, Chu Z, Wang P et al (2017) Planar-structure perovskite solar cells with efficiency beyond 21%. Adv Mater 29(46):1703852

    Article  CAS  Google Scholar 

  49. Xie J, Huang K, Yu X et al, (2017) Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano 11(9):9176–9182

    Article  CAS  Google Scholar 

  50. Anaraki EH, Kermanpur A, Steier L et al (2016) Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ Sci 9(10):3128–3134

    Article  CAS  Google Scholar 

  51. Bach U, Lupo D, Comte P et al (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702):583–585

    Article  CAS  Google Scholar 

  52. Calió L, Kazim S, Grätzel M, Ahmad S (2016) Hole-transport materials for perovskite solar cells. Angew Chem Int Ed 55(47):14522–14545

    Article  CAS  Google Scholar 

  53. (a) Nguyen WH, Bailie CD, Unger EL, McGehee MD (2014) Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye-sensitized solar cells. J Am Chem Soc 136(31):10996–11001; (b) Li M-H, Yum J-H, Moon S-J, Chen P (2016) Inorganic p-type semiconductors: their applications and progress in dye-sensitized solar cells and perovskite solar cells. Energies 9(5):331

    Google Scholar 

  54. (a) Chen Y, Yang Z, Wang S et al (2018) Design of an inorganic mesoporous hole-transporting layer for highly efficient and stable inverted perovskite solar cells. Adv Mater 30(52):1805660; (b) Kung P-K, Li M-H, Lin P-Y, Chiang Y-H, Chan C-R, Guo T-F, Chen P (2018) A review of inorganic hole transport materials for perovskite solar cells. Adv Mater Interfaces 5(22):1800882; (c) Singh R, Singh PK, Bhattacharya B, Rhee H-W (2019) Review of current progress in inorganic hole-transport materials for perovskite solar cells. Appl Mater Today 14:175–200

    Google Scholar 

  55. Chen J, Park N-G (2018) Inorganic hole transporting materials for stable and high efficiency perovskite solar cells. J Phys Chem C 122(25):14039–14063

    Article  CAS  Google Scholar 

  56. Saliba M, Orlandi S, Matsui T et al (2016) A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature Energy 1:15017

    Article  CAS  Google Scholar 

  57. Xu B, Zhang J, Hua Y et al (2017) Tailor-making low-cost spiro[fluorene-9,9′-xanthene]-based 3D oligomers for perovskite solar cells. Chem 2(5):676–687

    Article  CAS  Google Scholar 

  58. Wang L, Zhang J, Liu P et al (2018) Design and synthesis of dopant-free organic hole-transport materials for perovskite solar cells. Chem Commun 54(69):9571–9574

    Article  CAS  Google Scholar 

  59. Bi D, Xu B, Gao P, Sun L, Grätzel M, Hagfeldt A (2016) Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy 23:138–144

    Article  CAS  Google Scholar 

  60. (a) Yu Z, Sun L (2018) Inorganic hole-transporting materials for perovskite solar cells. Small Methods 2(2):1700280; (b) Rajeswari R, Mrinalini M, Prasanthkumar S, Giribabu L (2017) Emerging of inorganic hole transporting materials for perovskite solar cells. Chem Rec 17(7):681–699; (c) Wang Q, Li H, Zhuang J et al (2019) Hole transport materials doped to absorber film for improving the performance of the perovskite solar cells. Mater Sci Semicond Proc 98:113–120

    Google Scholar 

  61. Rao H, Ye S, Sun W et al (2016) A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3−xClx solar cells by an effective Cl doping method. Nano Energy 27:51–57

    Article  CAS  Google Scholar 

  62. Zhang H, Wang H, Chen W, Jen AK-Y (2017) CuGaO2: a promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells. Adv Mater 29(8):1604984

    Article  CAS  Google Scholar 

  63. Liu C, Zhou X, Chen S, Zhao X, Dai S, Xu B (2019) Hydrophobic Cu2O quantum dots enabled by surfactant modification as top hole-transport materials for efficient perovskite solar cells. Adv Sci 6(7):1801169

    Article  CAS  Google Scholar 

  64. Chen Y, Yang Z, Jia X et al (2019) Thermally stable methylammonium-free inverted perovskite solar cells with Zn2+ doped CuGaO2 as efficient mesoporous hole-transporting layer. Nano Energy 61:148–157

    Article  CAS  Google Scholar 

  65. Joselevich E (2004) Electronic structure and chemical reactivity of carbon nanotubes: a chemist’s view. ChemPhysChem 5(5):619–624

    Article  CAS  Google Scholar 

  66. Wang H, Yuan Y, Wei L, Goh K, Yu D, Chen Y (2015) Catalysts for chirality selective synthesis of single-walled carbon nanotubes. Carbon 81:1–19

    Article  CAS  Google Scholar 

  67. Wu H-C, Chang X, Liu L, Zhao F, Zhao Y (2010) Chemistry of carbon nanotubes in biomedical applications. J Mater Chem 20(6):1036–1052

    Article  CAS  Google Scholar 

  68. Jain RM, Howden R, Tvrdy K et al (2012) Polymer-free near-infrared photovoltaics with single chirality (6,5) semiconducting carbon nanotube active layers. Adv Mater 24(32):4436–4439

    Article  CAS  Google Scholar 

  69. (a) Vavro J, Llaguno MC, Fischer JE et al (2003) Thermoelectric power of p-doped single-wall carbon nanotubes and the role of phonon drag. Phys Rev Lett 90(6):065503; (b) Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801–1804; (c) Nonoguchi Y, Ohashi K, Kanazawa R et al (2013) Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants. Sci Rep 3:3344

    Google Scholar 

  70. Kim SM, Jang JH, Kim KK et al (2009) Reduction-controlled viologen in bisolvent as an environmentally stable n-type dopant for carbon nanotubes. J Am Chem Soc 131(1):327–331

    Article  CAS  Google Scholar 

  71. (a) Chatterjee S, Pal AJ (2018) Influence of metal substitution on hybrid halide perovskites: towards lead-free perovskite solar cells. J Mater Chem A6(9):3793–3823; (b) Wang H, Kim DH (2017) Perovskite-based photodetectors: materials and devices. Chem Soc Rev 46(17):5204–5236; (c) Hong K, Le QV, Kim SY, Jang HW (2018) Low-dimensional halide perovskites: review and issues. J Mater Chem C6(9):2189–2209

    Google Scholar 

  72. (a) Green MA, Bein T (2015) Perovskite cells charge forward. Nat Mater 14:559–561; (b) Fu Q, Tang X, Huang B, Hu T, Tan L, Chen L, Chen Y, (2018) Recent progress on the long-term stability of perovskite solar cells. Adv Sci 5(5):1700387

    Google Scholar 

  73. Wang D, Wright M, Elumalai NK, Uddin A (2016) Stability of perovskite solar cells. Sol Energy Mat Sol Cells 147:255–275

    Article  CAS  Google Scholar 

  74. Tsai C-M, Shiu H-S, Wu H-P, Diau EW-G (2017) Control of film morphology for high-performance perovskite solar cells. In: DiauandP EW-G, Chen C-Y (eds) Perovskite solar cells principle, materials and devices. World Scientific Publishing Co., New Jersey

    Google Scholar 

  75. (a) Snaith HJ, Abate A, Ball JM et al (2014) Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett 5:(9) 1511–1515; (b) Bergmann V W, Weber S A L, Javier Ramos F et al (2014) Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat Commun 5:5001; (c) Chen B, Yang M, Priya S, Zhu K (2016) Origin of J–V hysteresis in perovskite solar cells. J Phys Chem Lett 7(5):905–917

    Google Scholar 

  76. (a) Ihly R, Dowgiallo A-M, Yang M et al (2016) Efficient charge extraction and slow recombination in organic–inorganic perovskites capped with semiconducting single-walled carbon nanotubes. Energy Environ Sci 9(4):1439–1449; (b) Blackburn JL (2017) Semiconducting single-walled carbon nanotubes in solar energy harvesting. ACS Energy Lett 2(7):1598–1613

    Google Scholar 

  77. (a) Tiong VT, Pham ND, Wang T et al (2018) Octadecylamine-functionalized single-walled carbon nanotubes for facilitating the formation of a monolithic perovskite layer and stable solar cells. Adv Funct Mater 28(10):1705545; (b) Ryu J, Lee K, Yun J, Yu H, Lee J, Jang J (2017) Paintable carbon-based perovskite solar cells with engineered perovskite/carbon interface using carbon nanotubes dripping method. Small 13(38):1701225; (c) Aitola K, Domanski K, Correa-Baena J-P et al (2017) High temperature-stable perovskite solar cell based on low-cost carbon nanotube hole contact. Adv Mater 29(17):1606398; (d) Ahn N, Jeon I, Yoon J, Kauppinen EI, Matsuo Y, Maruyama S, Choi M (2018) Carbon-sandwiched perovskite solar cell. J Mater Chem A6(4):1382–1389

    Google Scholar 

  78. Zhang Y, Tan L, Fu Q, Chen L, Ji T, Hu X, Chen Y (2016) Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells. Chem Commun 52(33):5674–5677

    Article  CAS  Google Scholar 

  79. (a) Park C, Ko H, Sin DH, Song KC, Cho K (2017) Organometal halide perovskite solar cells with improved thermal stability via grain boundary passivation using a molecular additive. Adv Funct Mater 27(42):1703546; (b) Lee J-W, Bae S-H, De Marco N, Hsieh Y-T, Dai Z, Yang Y (2018) The role of grain boundaries in perovskite solar cells. Materials Today Energy 7:149–160

    Google Scholar 

  80. (a) Ham S, Choi Y J, Lee J-W, Park N-G, Kim D (2017) Impact of excess CH3NH3I on free carrier dynamics in high-performance nonstoichiometric perovskites. J Phys Chem C121(5):3143–3148; (b) Yang M, Zeng Y, Li Z, Kim DH, Jiang C-S, van de Lagemaat J, Zhu K (2017) Do grain boundaries dominate non-radiative recombination in CH3NH3PbI3 perovskite thin films? Phys Chem Chem Phys 19(7):5043–5050

    Google Scholar 

  81. Gu Z, Huang Z, Li C, Li M, Song Y (2018) A general printing approach for scalable growth of perovskite single-crystal films. Sci Adv 4(6):eaat2390

    Article  CAS  Google Scholar 

  82. Wang Y, Zhao H, Mei Y, Liu H, Wang S, Li X (2019) Carbon nanotube bridging method for hole transport layer-free paintable carbon-based perovskite solar cells. ACS Appl Mater Interfaces 11(1):916–923

    Article  CAS  Google Scholar 

  83. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051

    Article  CAS  Google Scholar 

  84. (a) Qin K, Dong B, Wang S (2019) Improving the stability of metal halide perovskite solar cells from material to structure. J Energy Chem 33:90–99; (b) Byranvand MM, Kharat AN, Taghavinia N (2019) Moisture stability in nanostructured perovskite solar cells. Mater Lett 237:356–360

    Google Scholar 

  85. Frost JM, Butler KT, Brivio F, Hendon CH, van Schilfgaarde M, Walsh A (2014) Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett 14(5):2584–2590

    Article  CAS  Google Scholar 

  86. You J, Meng L, Song T-B et al (2015) Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol 11:75

    Article  CAS  Google Scholar 

  87. (a) Guo Y, Kang L, Zhu M, Zhang Y, Li X, Xu P (2018) A strategy toward air-stable and high-performance ZnO-based perovskite solar cells fabricated under ambient conditions. Chem Eng J 336:732–740; (b) Song J, Liu L, Wang X-F, Chen G, Tian W, Miyasaka T (2017) Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber. J Mater Chem A5(26):13439–13447

    Google Scholar 

  88. Zhang W, Ren Z, Guo Y, He X, Li X (2018) Improved the long-term air stability of ZnO-based perovskite solar cells prepared under ambient conditions via surface modification of the electron transport layer using an ionic liquid. Electrochim Acta 268:539–545

    Article  CAS  Google Scholar 

  89. Choi EY, Kim J, Lim S, Han E, Ho-Baillie AWY, Park N (2018) Enhancing stability for organic-inorganic perovskite solar cells by atomic layer deposited Al2O3 encapsulation. Sol Energy Mat Sol Cells 188:37–45

    Article  CAS  Google Scholar 

  90. Wu S, Chen R, Zhang S et al (2019) A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat Commun 10(1):1161

    Google Scholar 

  91. (a) Siegler TD, Houck DW, Cho SH, Milliron DJ, Korgel BA (2019) Bismuth Enhances the Stability of CH3NH3PbI3 (MAPI) perovskite under high humidity. J Phys Chem C123(1):963–970; (b) Chan S-H, Wu M-C, Lee K-M, Chen W-C, Lin T-H, Su W-F (2017) Enhancing perovskite solar cell performance and stability by doping barium in methylammonium lead halide. J Mater Chem A5(34):18044–18052; (c) Niu G, Li W, Li J, Liang X, Wang L (2017) Enhancement of thermal stability for perovskite solar cells through cesium doping. RSC Adv 7(28):17473–17479; (d) Zhang X, Ren X, Liu B et al (2017) Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy Environ Sci 10(10):2095–2102

    Google Scholar 

  92. Saliba M, Matsui T, Seo J-Y et al (2016) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 9(6):1989–1997

    Article  CAS  Google Scholar 

  93. Yang S, Wang Y, Liu P, Cheng Y-B, Zhao HJ, Yang HG (2016) Functionalization of perovskite thin films with moisture-tolerant molecules. Nat Energy 1:15016

    Article  CAS  Google Scholar 

  94. Meng L, Zhang F, Ma W et al (2019) Improving photovoltaic stability and performance of perovskite solar cells by molecular interface engineering. J Phys Chem B 123(2):1219–1225

    CAS  Google Scholar 

  95. (a) Wei D, Huang H, Cui P et al (2019) Moisture-tolerant supermolecule for the stability enhancement of organic–inorganic perovskite solar cells in ambient air. Nanoscale 11(3):1228–1235; (b) Quan LN, Yuan M, Comin R et al (2016) Ligand-stabilized reduced-dimensionality perovskites. J Am Chem Soc 138(8):2649–2655

    Google Scholar 

  96. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48(2):183–185

    Article  CAS  Google Scholar 

  97. (a) Zhang S, Qin Y, Zhu J, Hou J (2018) Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv Mater 30(20):1800868; (b) Xue R, Zhang J, Li Y, Li Y (2018) Organic solar cell materials toward commercialization. Small 14(41):1801793; (c) Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115(23):12666–12731

    Google Scholar 

  98. Speller EM (2017) The significance of fullerene electron acceptors in organic solar cell photo-oxidation. Mater Sci Tech 33(8):924–933

    Article  CAS  Google Scholar 

  99. Glatthaar M, Niggemann M, Zimmermann B, Lewer P, Riede M, Hinsch A, Luther J (2005) Organic solar cells using inverted layer sequence. Thin Solid Films 491(1):298–300

    Article  CAS  Google Scholar 

  100. Rafique S, Abdullah SM, Sulaiman K, Iwamoto M (2018) Fundamentals of bulk heterojunction organic solar cells: an overview of stability/degradation issues and strategies for improvement. Renew Sust Energy Rev 84:43–53

    Article  Google Scholar 

  101. Gaspar H, Figueira F, Pereira L, Mendes A, Viana J C,Bernardo G (2018) Recent developments in the optimization of the bulk heterojunction morphology of polymer: fullerene solar cells. Materials 11(12):2560

    Article  CAS  Google Scholar 

  102. Nelson J (2011) Polymer: fullerene bulk heterojunction solar cells. Mater Today 14(10):462–470

    Article  CAS  Google Scholar 

  103. (a) Liao H-C, Ho C-C, Chang C-Y, Jao M-H, Darling SB, Su W-F (2013) Additives for morphology control in high-efficiency organic solar cells. Mater. Today 16(9):326–336; (b) Berger PR, Kim M (2018) Polymer solar cells: P3HT:PCBM and beyond. J Renew Sustain Enerey 10(1):013508; (c) Laird DW, Vaidya S, Li S et al (2007) Advances in plexcore active layer technology systems for organic photovoltaics: roof-top and accelerated lifetime analysis of high performance organic photovoltaic cells. In: Organic Photovoltaics VIII, vol 6656. SPIE, p. 66560X

    Google Scholar 

  104. Tamilavan V, Song M, Jin S-H, Hyun MH (2013) Synthesis of new broad absorption low band gap random copolymers for bulk heterojunction solar cell applications. Macromol Res 21(4):406–413

    Article  CAS  Google Scholar 

  105. Mikroyannidis JA, Tsagkournos DV, Sharma SS, Vijay YK, Sharma GD (2010) Conjugated small molecules with broad absorption containing pyridine and pyran units: synthesis and application for bulk heterojunction solar cells. Org Electron 11(12):2045–2054

    Article  CAS  Google Scholar 

  106. (a) Pratyusha T, Sivakumar G, Yella A, Gupta D, (2017) Novel ternary blend of PCDTBT, PCPDTBT and PC70BM for the fabrication of bulk heterojunction organic solar cells. Mater Today Proc 4(4, Part B):5067–5073; (b) Boland P, Lee K, Namkoong G (2010) Device optimization in PCPDTBT:PCBM plastic solar cells. Sol Energy Mat Sol C 94(5):915–920

    Google Scholar 

  107. Alem S, Chu T-Y, Tse SC et al (2011) Effect of mixed solvents on PCDTBT:PC70BM based solar cells. Org Electron 12(11):1788–1793

    Article  CAS  Google Scholar 

  108. Nagarjuna P, Bagui A, Gupta V, Singh SP (2017) A highly efficient PTB7-Th polymer donor bulk hetero-junction solar cell with increased open circuit voltage using fullerene acceptor CN-PC70BM. Org Electron 43:262–267

    Article  CAS  Google Scholar 

  109. Collado-Fregoso E, Deledalle F, Utzat H et al (2017) Photophysical study of DPPTT-T/PC70BM blends and solar devices as a function of fullerene loading: an Insight into EQE limitations of DPP-based polymers. Adv Func Mater 27(6):1604426

    Article  CAS  Google Scholar 

  110. (a) Bin H, Zhang Z-G, Gao L et al (2016) Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency. J Am Chem Soc 138(13):4657–4664; (b) Bin H, Gao L, Zhang Z-G et al (2016) 11.4% efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat Commun 7:13651

    Google Scholar 

  111. Xu X, Bi Z, Ma W et al (2017) Highly efficient ternary-blend polymer solar cells enabled by a nonfullerene acceptor and two polymer donors with a broad composition tolerance. Adv Mater 29(46):1704271

    Article  CAS  Google Scholar 

  112. Fei Z, Eisner FD, Jiao X et al (2018) An alkylated Indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses. Adv Mater 30(8):1705209

    Article  CAS  Google Scholar 

  113. (a) Zhang Z, Yuan J, Wei Q, Zou Y (2018) Small-molecule electron acceptors for efficient non-fullerene organic solar cells. Front Chem 6:414–414; (b) Liang N, Sun K, Feng J et al (2018) Near-infrared electron acceptors based on terrylene diimides for organic solar cells. J Mater Chem A6(39):18808–18812; (c) Wang J, Zhan X (2019) Rylene diimide electron acceptors for organic solar cells. Trends Chem. https://doi.org/10.1016/j.trechm.2019.1005.1002; (d) Li S, Zhang Z, Shi M, Li C-Z, Chen H (2017) Molecular electron acceptors for efficient fullerene-free organic solar cells. Phys Chem Chem Phys 19(5):3440–3458

  114. (a) Sauvé G, Fernando R (2015) Beyond fullerenes: designing alternative molecular electron acceptors for solution-processable bulk Heterojunction organic photovoltaics. J Phys Chem Lett 6(18):3770–3780; (b) Zhan C, Yao J, (2016) More than conformational “twisting” or “coplanarity”: molecular strategies for designing high-efficiency nonfullerene organic solar cells. Chem Mater 28(7):1948–1964; (c) Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J (2016) Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv Mater 28(42):9423–9429

    Google Scholar 

  115. (a) Gao L, Zhang Z-G, Xue L, Min J, Zhang J, Wei Z, Li Y (2016) All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv Mater 28(9):1884–1890; (b) Zhao R, Dou C, Xie Z, Liu J, Wang L (2016) Polymer acceptor based on B ← N units with enhanced electron mobility for efficient all-polymer solar cells. Angew Chem Int Ed 55(17):5313–5317

    Google Scholar 

  116. (a) Ganesamoorthy R, Sathiyan G, Sakthivel P (2017) Review: fullerene based acceptors for efficient bulk heterojunction organic solar cell applications. Sol Energ Mat Sol C 161:102–148; (b) Cui Y, Yao H, Zhang J et al (2019) Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat Commun 10(1):2515

    Google Scholar 

  117. Kim M, Lee J, Sin D H, Lee H, Woo H Y,Cho K, (2018) Nonfullerene/fullerene acceptor blend with a tunable energy state for high-performance ternary organic solar cells. ACS Appl. Mater. Interfaces 10(30):25570–25579

    Article  CAS  Google Scholar 

  118. Zhao J, Li Y, Yang G et al (2016) Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy 1:15027

    Article  CAS  Google Scholar 

  119. (a) Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J (2016) Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv Mater 28(23):4734–4739; (b) Li S, Ye L, Zhao W et al (2018) A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J Am Chem Soc 140(23):7159–7167

    Google Scholar 

  120. (a) Wadsworth A, Moser M, Marks A et al (2019) Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem Soc Rev 48(6):1596–1625; (b) Pan Q-Q, Li S-B, Wu Y, Geng Y, Zhang M, Su Z-M (2018) Exploring more effective polymer donors for the famous non-fullerene acceptor ITIC in organic solar cells by increasing electron-withdrawing ability. Org Electron 53:308–314; (c) Cui C (2018) Recent progress in fused-ring based nonfullerene acceptors for polymer solar cells. Front Chem 6:404

    Google Scholar 

  121. Yang K, Liao Q, Koh CW et al (2019) Improved photovoltaic performance of a nonfullerene acceptor based on a benzo[b]thiophene fused end group with extended π-conjugation. J Mater Chem A7(16):9822–9830

    Article  Google Scholar 

  122. Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J (2017) Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc 139(21):7148–7151

    Article  CAS  Google Scholar 

  123. Ameri T, Dennler G, Lungenschmied C, Brabec CJ (2009) Organic tandem solar cells: a review. Energy Environ Sci 2(4):347–363

    Article  CAS  Google Scholar 

  124. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32(3):510–519

    Article  CAS  Google Scholar 

  125. Vos AD (1980) Detailed balance limit of the efficiency of tandem solar cells. J Phys D Appl Phys 13(5):839–846

    Article  Google Scholar 

  126. PVeducation, Reference solar spectral irradiance: ASTM G-173. 11/07/2019. https://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra

  127. Xue J, Uchida S, Rand BP, Forrest SR (2004) Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl Phys Lett 85(23):5757–5759

    Article  CAS  Google Scholar 

  128. Gilot J, Janssen RAJ (2014) Tandem and multijunction organic solar cells. In: Randand BP, Richter H (eds) Organic solar cells: fundamentals, devices, and upscaling, Pan Stanford, Florida

    Chapter  Google Scholar 

  129. Jošt M, Köhnen E, Morales-Vilches AB et al (2018) Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy Environ Sci 11(12):3511–3523

    Article  Google Scholar 

  130. Jeon NJ, Na H, Jung EH et al (2018) A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy 3(8):682–689

    Article  CAS  Google Scholar 

  131. Werner J, Weng C-H, Walter A et al (2016) Efficient monolithic perovskite/silicon tandem solar cell with cell area > 1 cm2. J Phys Chem Lett 7(1):161–166

    Article  CAS  Google Scholar 

  132. Bush KA, Palmstrom AF, Yu ZJ et al (2017) 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy 2:17009

    Google Scholar 

  133. Meng L, Zhang Y, Wan X et al (2018) Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361(6407):1094–1098

    Google Scholar 

  134. Cariou R, Benick J, Beutel P et al (2017) Monolithic two-terminal III–V//Si triple-junction solar cells with 30.2% efficiency under 1-sun AM1.5g. IEEE J Photovolt 7(1):367–373

    Google Scholar 

  135. Essig S, Allebé C, Remo T et al (2017) Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat Energy 2:17144

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio A. P. Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Almeida, M.A.P. (2020). Recent Advances in Solar Cells. In: Sharma, S., Ali, K. (eds) Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-030-36354-3_4

Download citation

Publish with us

Policies and ethics