Skip to main content

Oxidation Kinetics of Palladium

  • Conference paper
  • First Online:
TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 5860 Accesses

Abstract

The kinetics of oxidation of palladium is investigated in this study. The effects of temperature and pressure on the oxide growth of palladium are discussed. A study of the linear regime of palladium oxidation data is examined, and regression analysis is utilized to analyze the oxidation of palladium. Comparison of the oxidation kinetics of palladium is made with that of ruthenium, rhodium and silver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winter M (1993) Ruthenium. In: Webelements. https://www.webelements.com/ruthenium/. Accessed 6 Sept 2019

  2. Winter M (1993) Rhodium. In: Webelements. https://www.webelements.com/rhodium/. Accessed 6 Sept 2019

  3. Winter M (1993) Palladium. In: Webelements. https://www.webelements.com/palladium/. Accessed 6 Sept 2019

  4. Winter M (1993) Silver. In: Webelements. https://www.webelements.com/silver/. Accessed 6 Sept 2019

  5. Patra A et al (2017) Properties of real metallic surfaces: effects of density functional semilocality and van der Waals nonlocality. Proc Nat Acad Sci 114(44):E9188–E9196. https://doi.org/10.1073/pnas.1713320114

  6. Tougaard S (2018) Improved XPS analysis by visual inspection of the survey spectrum. Surf Interface Anal 50:657–666

    Article  CAS  Google Scholar 

  7. Woodruff D (2002) Low energy electron diffraction. In Buschow KH (ed) Encyclopedia of materials: science and technology, 2nd edn., 2002. Reference module in chemistry, molecular sciences and chemical engineering 2002. Elsevier, New York, pp 1–4. https://dx.doi.org/10.1016/b978-0-12-803581-8.03400-7

  8. Kirz J, Jacobsen C (2009) The history and future of X-ray microscopy. J Phys Conf Ser 186(1):012001. https://doi.org/10.1088/1742-6596/186/1/012001

    Article  Google Scholar 

  9. Kryachko E, Ludeña E (2014) Density functional theory: foundations reviewed. Phys Rep 544(2):123–239. https://doi.org/10.1016/j.physrep.2014.06.002

    Article  CAS  Google Scholar 

  10. Lutton K, Scully J. Kinetics of oxide growth of passive films on transition metals. In: Wandelt K (ed) Encyclopedia of interfacial chemistry 2018 reference module in chemistry, Molecular sciences and chemical engineering 2017. Elsevier, New York, pp 284–290. https://dx.doi.org/10.1016/b978-0-12-409547-2.13576-0

  11. Fromhold AT (1976) Theory of metal oxidation. North Holland Publishing Company, Amsterdam, Signatur an der Bibliothek der Uni Graz: I 466591

    Google Scholar 

  12. Xu Z, Rosso K, Bruemmer S (2012) Metal oxidation kinetics and the transition from thin to thick films. Phys Chem Chem Phys 14(42):14534–14539. https://doi.org/10.1039/c2cp42760e

    Article  CAS  Google Scholar 

  13. Zheng G, Altman E (2002) The oxidation mechanism of Pd(100). Surf Sci 504:253–270. https://doi.org/10.1016/s0039-6028(02)01104-4

    Article  CAS  Google Scholar 

  14. Bondzie V, Kleban P, Dwyer D (2000) Kinetics of PdO formation and CO reduction on Pd(110). Surf Sci 465(3):266–276. https://doi.org/10.1016/s0039-6028(00)00709-3

    Article  CAS  Google Scholar 

  15. Zemlyanov D, Klötzer B, Gabasch H, Smeltz A, Ribeiro F, Zafeiratos S, Teschner D, Schnörch P, Vass E, Hävecker M, Knop-Gericke A, Schlögl R (2013) Kinetics of palladium oxidation in the mbar pressure range: ambient pressure XPS study. Top Catal 56(11):885–895. https://doi.org/10.1007/s11244-013-0052-z

    Article  CAS  Google Scholar 

  16. de Rooij A (1989) The oxidation of silver by atomic oxygen. ESA J 13:363–382

    Google Scholar 

  17. Ribera R, Kruijs R, Yakshin A, Bijkerk F (2015) Determination of oxygen diffusion kinetics during thin film ruthenium oxidation. J Appl Phys 118(5):055303. https://doi.org/10.1063/1.4928295

    Article  CAS  Google Scholar 

  18. Carol L, Mann G (1990) High-temperature oxidation of rhodium. Oxid Met 34(1–2)

    Google Scholar 

  19. Han J (2004) Kinetic and morphological studies of palladium oxidation in O2-CH4 mixtures. Dissertation, Worcester Polytechnic Institute

    Google Scholar 

  20. Zheng G, Altman E (2000) The oxidation of Pd(111). Surf Sci 462(1–3):151–168. https://doi.org/10.1016/s0039-6028(00)00599-9

    Article  CAS  Google Scholar 

  21. Bukas V, Reuter K (2017) A comparative study of atomic oxygen adsorption at Pd surfaces from density functional theory. Surf Sci 658(Science 321 5890 2008):38–45. https://dx.doi.org/10.1016/j.susc.2017.01.001

  22. Brena B, Comelli G, Ursella L, Paolucci G (1997) Oxygen on Pd(110): substrate reconstruction and adsorbate geometry by tensor LEED. Surf Sci 375(2–3):150–160. https://doi.org/10.1016/s0039-6028(96)01295-2

    Article  CAS  Google Scholar 

  23. Todorova M (2004) Oxidation of palladium surfaces. Dissertation, Technical University Berlin

    Google Scholar 

  24. Westerström R, Weststrate C, Resta A, Mikkelsen A, Schnadt J, Andersen J, Lundgren E, Schmid M, Seriani N, Harl J, Mittendorfer F, Kresse G (2008) Stressing Pd atoms: initial oxidation of the Pd(110) surface. Surf Sci 602(14):2440–2447. https://doi.org/10.1016/j.susc.2008.05.033

    Article  CAS  Google Scholar 

  25. Lundgren E, Stierle A, Todorova M, Gustafson J, Mikkelsen A, Rogal J, Reuter K, Andersen J, Dosch H, Scheffler M (2003) Kinetic hindrance during the initial oxidation of Pd(100) at ambient pressures. Phys Rev Lett 92(4):046101-1-4. https://dx.doi.org/10.1103/physrevlett.92.046101

  26. Nagarajan S, Gopinath CS (2010) Diffusion of chemisorbed oxygen into Pd sub-surfaces and its influence in oxidation catalysis. J Indian Inst Sci 90(2):245–260

    CAS  Google Scholar 

  27. Todorova M, Reuter K, Scheffler M (2005) Density-functional theory study of the initial oxygen incorporation in Pd(111). Phys Rev B 71(19):195403. https://doi.org/10.1103/physrevb.71.195403

    Article  Google Scholar 

  28. Todorova M, Lundgren E, Blum V, Mikkelsen A, Gray S, Gustafson J, Borg M, Rogala J, Reuter K, Andersen J, Scheffler MP (2003) The Pd(100)–(root 5 x root 5)R27degrees-O surface oxide revisited. Surf Sci 541:101–112

    Article  CAS  Google Scholar 

  29. Gegner J, Hörz G, Kirchheim R (2009) Diffusivity and solubility of oxygen in solid palladium. J Mater Sci 44(9):2198–2205. https://doi.org/10.1007/s10853-008-2923-4

    Article  CAS  Google Scholar 

  30. Böttcher A, Niehus H (1999) Formation of subsurface oxygen at Ru(0001). J Chem Phys 110(6):3186–3195. https://doi.org/10.1063/1.477839

    Article  Google Scholar 

  31. Baskaran A, Smereka P (2012) Mechanisms of Stranski-Krastanov growth. J Appl Phys 111(4):044321. https://doi.org/10.1063/1.3679068

    Article  CAS  Google Scholar 

  32. Michaelides A, Bocquet M, Sautet P, Alavi A, King D (2003) Structures and thermodynamic phase transitions for oxygen and silver oxide phases on Ag{111}. Chem Phys Lett 367(3–4):344–350. https://doi.org/10.1016/s0009-2614(02)01699-8

    Article  CAS  Google Scholar 

  33. Stampfl C (2005) Surface processes and phase transitions from ab initio atomistic thermodynamics and statistical mechanics. Catal Today 105(1):17–35. https://doi.org/10.1016/j.cattod.2005.04.015

    Article  CAS  Google Scholar 

  34. Gustafson J, Mikkelsen A, Borg M, Lundgren E, Köhler L, Kresse G, Schmid M, Varga P, Yuhara J, Torrelles X, Quirós C, Andersen J (2003) Self-limited growth of a thin oxide layer on Rh(111). Phys Rev Lett 92(12):126102. https://doi.org/10.1103/physrevlett.92.126102)

    Article  Google Scholar 

  35. Reuter K, Stampfl C, Ganduglia-Pirovano M, Scheffler M (2002) Atomistic description of oxide formation on metal surfaces: the example of ruthenium. Chem Phys Lett 352(5–6):311–317. https://doi.org/10.1016/s0009-2614(01)01472-5

    Article  CAS  Google Scholar 

  36. Ribera R, Kruijs R, Kokke S, Zoethout E, Yakshin A, Bijkerk F (2014) Surface and sub-surface thermal oxidation of thin ruthenium films. Appl Phys Lett 105(13):131601. https://doi.org/10.1063/1.4896993

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuggehalli M. Ravindra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rubin, S., Ravindra, N.M. (2020). Oxidation Kinetics of Palladium. In: TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36296-6_184

Download citation

Publish with us

Policies and ethics