Skip to main content

\({\mathcal R}\) Boundedness, Maximal Regularity and Free Boundary Problems for the Navier Stokes Equations

  • Chapter
  • First Online:
Mathematical Analysis of the Navier-Stokes Equations

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2254))

  • 1502 Accesses

Abstract

In these lecture notes, we study free boundary problems for the Navier–Stokes equations with and without surface tension. The local well-posedness, global well-posedness, and asymptotics of solutions as time goes to infinity are studied in the L p in time and L q in space framework. To prove the local well-posedness, we use the tool of maximal L pL q regularity for the Stokes equations with nonhomogeneous free boundary conditions. Our approach to proving maximal L pL q regularity is based on the \({\mathcal R}\)-bounded solution operators of the generalized resolvent problem for the Stokes equations with non-homogeneous free boundary conditions and the Weis operator-valued Fourier multiplier.

Key to proving global well-posedness for the strong solutions is the decay properties of the Stokes semigroup, which are derived by spectral analysis of the Stokes operator in the bulk space and the Laplace–Beltrami operator on the boundary. We study the following two cases: (1) a bounded domain with surface tension and (2) an exterior domain without surface tension. In studying the latter case, since for unbounded domains we can obtain only polynomial decay in suitable L q norms in space, to guarantee the L p-integrability of solutions in time it is necessary to have the freedom to choose an exponent with respect to the time variable, thus it is essential to choose different exponents p and q.

The basic approach of this chapter is to analyze the generalized resolvent problem, prove the existence of \({\mathcal R}\)-bounded solution operators and determine the decay properties of solutions to the non-stationary problem. In particular, R-bounded solution operator and Weis’ operator valued Fourier multiplier theorem and transference theorem for the Fourier multiplier, we derive the maximal L pL q regularity for the initial boundary value problem, find periodic solutions with non-homogeneous boundary conditions, and generate analytic semigroups for systems of parabolic equations, including equations appearing in fluid mechanics. This approach is quite new and extends the Fujita–Kato method in the study of the Navier–Stokes equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The linearization principle means how to divide a nonlinear equation into a linear part and a non-linear part.

References

  1. H. Abels, The initial-value problem for the Navier–Stokes equations with a free surface in L q-Sobolev spaces. Adv. Differential Equ. 10, 45–64 (2005)

    MathSciNet  MATH  Google Scholar 

  2. H. Abels, On general solutions of two-phase flows for viscous incompressible fluids. Interfaces Free Boud. 9, 31–65 (2007)

    Article  MATH  Google Scholar 

  3. G. Allain, Small-time existence for Navier–Stokes equations with a free surface. Appl. Math. Optim. 16, 37–50 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Amann, M. Hieber, G. Simonett, Bounded H -calculus for elliptic operators. Differ. Integral Eq. 7, 613–653 (1994)

    MathSciNet  MATH  Google Scholar 

  5. J.T. Beale, The initial value problem for the Navier–Stokes equations with a free surface. Commun. Pure Appl. Math. 34, 359–392 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. J.T. Beale, Large-time regularity of viscous surface waves. Arch. Ration. Mech. Anal. 84, 307–352 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.T. Beale, T. Nishida, Large-time behaviour of viscous surface waves. Lecuter Notes Num. Appl. Anal. 8, 1–14 (1985)

    MATH  Google Scholar 

  8. J. Bergh, J. Löfström, Interpolation Spaces, An Introduction. Grundlehren der mathematischen Wissenschaften 223, A Series of Comprehensive Studies in Mathematics (Springer, New York, 1976)

    Google Scholar 

  9. M.E. Bogovskiı̆, Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Dokl. Acad. Nauk SSSR. 248, 1037–1049 (1976); English transl: Soviet Math. Dokl. 20, 1094–1098 (1976)

    Google Scholar 

  10. M.E. Bogovskiı̆, Solution of some vector analysis problems connected with operators div and grad (in Russian), in Trudy Seminar S. L. Sobolev, vol. 80 (Akademia Nauk SSR, Sibirskoe Otdelenie Matematik, Nowosibirsk , 1980), pp. 5–40

    Google Scholar 

  11. J. Bourgain, Vector-valued singular integrals and the H 1-BMO duality, in Probability Theory and Harmonic Analysis, ed. by D. Borkholder (Marcel Dekker, New York, 1997), pp. 1–19

    Google Scholar 

  12. I.V. Denisova, A priori estimates for the solution of a linear time-dependent problem connected with the motion of a drop in a fluid medium. Trudy Mat. Inst. Steklov. 188, 3–21 (1990) (in Russian); English transl.: Proc. Steklov Inst. Math. 188, 1–24 (1991)

    Google Scholar 

  13. I.V. Denisova, Problem of the motion of two viscous incompressible fluids separated by a closed free interface. Acta Appl. Math. 37, 31–40 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. I.V. Denisova, V.A. Solonnikov, Solvability in Hölder spaces of a model initial-boundary value problem generated by a problem on the motion of two fluids. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 181, 5–44 (1991) (in Russian); English transl.: J. Math. Sci. 70, 1717–1746 (1994)

    Google Scholar 

  15. I.V. Denisova, V.A. Solonnikov, Classical solvability of the problem on the motion of two viscous incompressible fluids. Algebra i Analiz 7, 101–142 (1995) (in Russian); English transl.: St.Petersburg Math. J. 7, 755–786 (1996)

    Google Scholar 

  16. R. Denk, R. Schnaubelt, A structurally damped plate equations with Dirichlet-Neumann boundary conditions. J. Differ. Equ. 259(4), 1323–1353 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Denk, M. Hieber, J. Prüß, \({\mathcal R}\)-Boundedness, Fourier multipliers and problems of elliptic and parabolic type, vol. 166, no. 788 (Memoirs of AMS, Providence, 2003)

    Google Scholar 

  18. Y. Enomoto, Y. Shibata, On the \({\mathcal R}\)-sectoriality and its application to some mathematical study of the viscous compressible fluids. Funk. Ekvaj. 56, 441–505 (2013)

    Google Scholar 

  19. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Steady Problems. Springer Monographs in Mathematics, 2nd edn (Springer, Berlin, 2011), ISBN 978-0-387-09620-9 (eBook). https://doi.org/10.1007/978-0-387-09620-9. Springer, New York

  20. Y. Giga, Sh. Takahashi, On global weak solutions of the nonstationary two-phase Stokes flow. SIAM J. Math. Anal. 25, 876–893 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Grubb, V.A. Solonnikov, Boundary value problems for the nonstationary Navier–Stokes equations treated by pseudo-differential methods. Math. Scand. 69, 217–290 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Hanzawa, Classical solutions of the Stefan problem. Tohoku Math. J. 33, 297–335 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Hataya, Decaying soluiton of a Navier–Stokes flow without surface tension, J. Math. Kyoto Univ. 49, 691–717 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Y. Hataya, A remark on Beale-Nishida’s paper. Bull. Inst. Math. Acad. Sin. (N.S.) 6(3), 293–303 (2011)

    Google Scholar 

  25. Y. Hataya, S. Kawashima, Decaying solution of the Navier–Stokes flow of infinite volume without surface tension. Nonlinear Anal. 71(12), 2535–2539 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Köhne, J. Prüss, M. Wilke, Qualitative behavior of solutions for the two-phase Navier–Stokes equations with surface tension. Math. Ann. 356, 737–792 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Lynn, G. Sylvester, Large time existence of small viscous surface waves without surface tension. Comm. Part. Differ. Eqns. 15, 823–903 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. I.Sh. Mogilevskiı̆, V.A. Solonnikov, Solvability of a noncoercive initial boundary-value problem for the Stokes system in Hölder classes of functions. Z Anal. Anwend. 8(4), 329–347 (1989)

    Google Scholar 

  29. I.Sh. Mogilevskiı̆, V.A. Solonnikov, On the solvability of an evolution free boundary problem for the Navier–Stokes equations in the Hölder spaces of functions, in Mathematical Problems Relating to the Navier–Stokes Equations, ed. by G.P. Galdi. Series on Advances in Mathematics for Applied Sciences, vol. 11 (World Scientific, Singapore, 1992), pp. 105–181

    Google Scholar 

  30. P.B. Mucha, W. Zaja̧czkowski, On local existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion. Applicationes Mathematicae 27, 319–333 (2000)

    Google Scholar 

  31. U. Neri, Singular Integrals. Lecture Notes in Mathematics, vol. 200 (Springer, Berlin, 1971)

    Google Scholar 

  32. A. Nouri, F. Poupaud, An existence theorem for the multifluid Navier–Stokes problem. J. Differ. Equ. 123, 71–88 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Padula, V.A. Solonnikov, On the global existence of nonsteady motions of a fluid drop and their exponential decay to a uniform rigid rotation. Quad. Mat. 10, 185–218 (2002)

    MathSciNet  MATH  Google Scholar 

  34. M. Padula, V.A. Solonnikov, On local solvability of the free boundary problem for the Navier–Stokes equations. Problemy Mat. Analiza 50, 87–112 (2019); English trans. J. Math. Sci., 170(4), 522–553 (2010)

    Google Scholar 

  35. J. Prüss, G. Simonett, On the two-phase Navier–Stokes equations with surface tension. Interfaces Free Bound. 12, 311–345 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Prüss, G. Simonett, Analytic solutions for the two-phase Navier–Stokes equations with surface tension and gravity. Progr. Nonlinear Differ. Equ. Appl. 80, 507–540 (2011)

    MathSciNet  MATH  Google Scholar 

  37. J. Prüss, G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations. Birkhauser Monographs in Mathematics, (Springer, Berlin, 2016), ISBN: 978-3-319-27698-4

    Google Scholar 

  38. H. Saito, Global solvability of the Navier–Stokes equations with a free surface in the maxial L pL q regularity class. J. Differ. Equ. 264(3), 1475–1520 (2018)

    Article  MATH  Google Scholar 

  39. H. Saito, Y. Shibata, On decay properties of solutions to the Stokes equations with surface tension and gravity in the half space. J. Math. Soc. Japan 68(4), 1559–1614 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. H. Saito, Y. Shibata, On the global wellposedness of free boundary problem for the Navier Stokes systems with surface tension, Preprint arXiv:1912.10121 [math.AP]

    Google Scholar 

  41. B. Schweizer, Free boundary fluid systems in a semigroup approach and oscillatory behavior. SIAM J. Math. Anal. 28, 1135–1157 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Y. Shibata, Generalized resolvent estimates of the Stokes equations with first order boundary condition in a general domain. J. Math. fluid Mech., 15(1), 1–40 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Y. Shibata, On the \({\mathcal R}\)-boundedness of solution operators for the Stokes equations with free boundary condition. Differ. Int. Eqns. 27(3–4), 313–368 (2014)

    Google Scholar 

  44. Y. Shibata, Local well-posedness of free surface problems for the Navier–Stokes equations in a general domain. Discret. Contin. Dyn. Sys. Series S 9(1), 315–342 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Y. Shibata, On the \({\mathcal R}\)-bounded solution operators in the study of free boundary problem for the Navier–Stokes equations, in Y. Suzuki. Springer Proceedings in Mathematics & Statistics, ed. by ed. Y. Shibata, vol. 183 (Mathematical Fluid Dynamics, Present and Future, Tokyo, 2016), pp.203–285

    Google Scholar 

  46. Y. Shibata, Global wellposedness of a free boundary problem for the Navier–Stokes equations in an exterior domain. Fluid Mech. Res. Int. 1(2), (2017). https://doi.org/10.15406/fimrij.2017.01.00008

  47. Y. Shibata, Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface. Evol. Equ. Control. The. 7(1), 117–152 (2018). https://doi.org/10.3934/eect.2018007

    Article  MathSciNet  MATH  Google Scholar 

  48. Y. Shibata, Local wellposedness for the free boundary problem of the Navier–Stokes equations in an exterior domain . Commun. Pure Appl. Anal. 17(4), 1681–1721 (2018). https://doi.org/10.3934/cpaa.2018081

    Article  MathSciNet  MATH  Google Scholar 

  49. Y. Shibata, On L pL q decay estimate for Stokes equations with free boudary condition in an exterior domain. Asymptotic Anal. 107(1–2), 33–72 (2018). https://doi.org/10.3233/ASY-171449

    Article  MathSciNet  Google Scholar 

  50. Y. Shibata, S. Shimizu, On a resolvent estimate for the Stokes system with Neumann boundary condition. Differ. Int. Eqns. 16(4), 385–426 (2003)

    MathSciNet  MATH  Google Scholar 

  51. Y. Shibata, S. Shimizu, On a resolvent estimate of the interface problem for the Stokes system in a bounded domain. J. Differ. Equ. 191, 408–444 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  52. Y. Shibata, S. Shimizu, On a free boundary problem for the Navier–Stokes equations. Differ. Int. Eqns. 20, 241–276 (2007)

    MathSciNet  MATH  Google Scholar 

  53. Y. Shibata, S. Shimizu, On the L pL q maximal regularity of the Neumann problem for the Stokes equations in a bounded domain. J. Reine Angew. Math. 615, 157–209 (2008)

    MathSciNet  MATH  Google Scholar 

  54. Y. Shibata, S. Shimizu, On the maximal L pL q regularity of the Stokes problem with first order boundary condition; model problems. J. Math. Soc. Japan 64(2), 561–626 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Y. Shibata, Suma’Inna, On the maximal L pL q theory arising in the study of a free boundary problem for the Navier–Stokes equations, FMRIJ-18-eBook-220, 2018

    Google Scholar 

  56. S. Shimizu, Maximal regularity and viscous incompressible flows with free interface, Parabolic and Navier–Stokes equations, Banach Center Publ. 81 (2008), 471–480.

    Article  MATH  Google Scholar 

  57. S. Shimizu, Local solvability of free boundary problems for two-phase Navier–Stokes equations with surface tension in the whole space, in Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol. 80 (Birkhäuser/Springer Basel AG, Basel, 2011), pp. 647–686

    Google Scholar 

  58. G. Simonett, M. Wilke, Stability of equilibrium shapes in some free boundary problems involving fluids, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, ed. by Y. Giga, A. Novtný, chap 25 (Springer International Publishing AG, Berlin, 2018), pp. 1221–1266 http://doi.org/10.1007/978-3-319-13344-7_27

  59. V.A. Solonnikov, Solvability of the evolution problem for an isolated mass of a viscous incompressible capillary liquid. Zap. Nauchn. (LOMI) 140, 179–186 (1984) (in Russian); English transl.: J. Soviet Math. 32, 223–238 (1986)

    Google Scholar 

  60. V.A. Solonnikov, Unsteady motion of a finite mass of fluid, bounded by a free surface. Zap. Nauchn. Sem. (LOMI) 152, 137–157 (1986) (in Russian); English transl.: J. Soviet Math. 40, 672–686 (1988)

    Google Scholar 

  61. V.A. Solonnikov, On the transient motion of an isolated volume of viscous incompressible fluid. Izv. Acad. Nauk SSSR. 51, 1065–1087 (1987) (in Russian); English transl.: Math. USSR Izv. 31, 381–405 (1988)

    Google Scholar 

  62. V.A. Solonnikov, On nonstationary motion of a finite isolated mass of self-gravitating fluid. Algebra i Analiz 1, 207–249 (1989) (in Russian); English transl.: Leningrad Math. J. 1, 227–276 (1990)

    Google Scholar 

  63. V.A. Solonnikov, On an initial-boundary value problem for the Stokes systems arising in the study of a problem with a free boundary. Trudy Mat. Inst. Steklov 188, 150–188 (1990) (in Russian); English transl.: Proc. Steklov Inst. Math. 3, 191–239 (1991)

    Google Scholar 

  64. V.A. Solonnikov, Solvability of the problem of evolution of a viscous incompressible fluid bounded by a free surface on a finite time interval. Algebra i Analiz 3, 222–257 (1991) (in Russian); English transl.: St. Petersburg Math. J. 3, 189–220 (1992)

    Google Scholar 

  65. V.A. Solonnikov, in Lectures on evolution free boundary problems: classical solutions, ed. by L. Ambrosio, P. Colli, J.F. Rodrigues. Lecture Notes in Mathematics (LNM), vol. 1812 (Springer, Berlin, 2003), pp.123–175

    Google Scholar 

  66. V.A. Solonnikov, On the linear problem arising in the study of a free boundary proiblem for the Navier–Stokes equations. St. Petersburg Math. J. 22, 1023–1049 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  67. V.A. Solonnikov, I.V. Denisova, Classical well-posedness of free boundary problems in viscous incompressible fluid mechanics, in ed. by Y. Giga, A. Novtný. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, chap 24 (Springer International Publishing AG, Berlin, 2018), pp.1135–1220. http://doi.org/10.1007/978-3-319-13344-7_27

  68. E.M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970)

    MATH  Google Scholar 

  69. Sh. Takahashi, On global weak solutions of the nonstationary two-phase Navier–Stokes flow. Adv. Math. Sci. Appl. 5, 321–342 (1995)

    MathSciNet  MATH  Google Scholar 

  70. N. Tanaka, Two-phase free boundary problem for viscous incompressible thermo-capillary convection. Jpn. J. Math. 21, 1–42 (1995)

    Article  MATH  Google Scholar 

  71. A. Tani, Small-time existence for the three-dimensional Navier–Stokes equations for an incompressible fluid with a free surface. Arch. Ration. Mech. Anal. 133, 299–331 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  72. A. Tani, N. Tanaka, Large-time existence of surface waves in incompressible viscous fluids with or without surface tension. Arch. Ration. Mech. Anal. 130, 303–314 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  73. H. Tanabe, Functional Analytic Methods for Partial Differential Equations. Pure and Applied Mathematics: A Series of Monographs and Text Books. (Dekker, New York, 1997), ISBN 0-8247-9774-4

    Google Scholar 

  74. L. Weis, Operator-valued Fourier multiplier theorems and maximal L p-regularity. Math. Ann. 319, 735–758 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is partially supported by JSPS Grant-in-aid for Scientific Research (A) 17H01097, Toyota Central Research Institute Joint Research Fund, and Top Global University Project. Adjunct faculty member in the Department of Mechanical Engineering and Materials Science, University of Pittsburgh.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shibata, Y. (2020). \({\mathcal R}\) Boundedness, Maximal Regularity and Free Boundary Problems for the Navier Stokes Equations. In: Galdi, G., Shibata, Y. (eds) Mathematical Analysis of the Navier-Stokes Equations. Lecture Notes in Mathematics(), vol 2254. Springer, Cham. https://doi.org/10.1007/978-3-030-36226-3_3

Download citation

Publish with us

Policies and ethics