Skip to main content

Spinal Cord Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironments in Organs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1226))

Abstract

Intramedullary spinal cord tumors (IMSCT) are rare entities for which there currently exist no standardized treatment paradigms. Consequently, patients usually receive treatment modalities that were established for intracerebral tumors; these approaches, however, typically result in functional impairment, recurrent tumor growth, and short overall survival. There is a distinct lack of promising research efforts in this field, which raises questions about whether spinal cord tumor microenvironment (TME) might promote the development, progression, and treatment resistance of IMSCT. In this review, we aim to examine spinal cord biology, compare spinal cord and brain microenvironments, and discuss mutual interactions between IMSCT and TME. Manipulating these pathways may provide new treatment approaches for future patient groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chamberlain MC, Tredway TL (2011) Adult primary intradural spinal cord tumors: a review. Curr Neurol Neurosci Rep 11(3):320–328

    Article  PubMed  Google Scholar 

  2. Zadnik PL, Gokaslan ZL, Burger PC, Bettegowda C (2013) Spinal cord tumours: advances in genetics and their implications for treatment. Nat Rev Neurol 9(5):257–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tobin MK, Geraghty JR, Engelhard HH, Linninger AA, Mehta AI (2015) Intramedullary spinal cord tumors: a review of current and future treatment strategies. Neurosurg Focus 39(2):E14

    Article  PubMed  Google Scholar 

  4. Spector R, Robert Snodgrass S, Johanson CE (2015) A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp Neurol 273:57–68

    Article  CAS  PubMed  Google Scholar 

  5. Bican O, Minagar A, Pruitt AA (2013) The spinal cord: a review of functional neuroanatomy. Neurol Clin 31(1):1–18

    Article  PubMed  Google Scholar 

  6. Bahney J, von Bartheld CS (2018) The Cellular Composition and Glia-Neuron Ratio in the Spinal Cord of a Human and a Nonhuman Primate: Comparison With Other Species and Brain Regions. Anat Rec (Hoboken) 301(4):697–710

    Article  Google Scholar 

  7. Quail DF, Joyce JA (2017) The microenvironmental landscape of brain tumors. Cancer Cell 31(3):326–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lorger M (2012) Tumor microenvironment in the brain. Cancers 4(1):218–243

    Article  PubMed  PubMed Central  Google Scholar 

  9. Grimm S, Chamberlain MC (2009) Adult primary spinal cord tumors. Expert Rev Neurother 9(10):1487–1495

    Article  PubMed  Google Scholar 

  10. Raco A, Esposito V, Lenzi J, Piccirilli M, Delfini R, Cantore G (2005) Long-term follow-up of intramedullary spinal cord tumors: a series of 202 cases. Neurosurgery 56(5):972–981; discussion-81

    PubMed  Google Scholar 

  11. Claus EB, Abdel-Wahab M, Burger PC, Engelhard HH, Ellison DW, Gaiano N et al (2010) Defining future directions in spinal cord tumor research: proceedings from the National Institutes of Health workshop. J Neurosurg Spine 12(2):117–121

    Article  PubMed  PubMed Central  Google Scholar 

  12. Benes V 3rd, Barsa P, Benes V Jr, Suchomel P (2009) Prognostic factors in intramedullary astrocytomas: a literature review. Eur Spine J 18(10):1397–1422

    Article  PubMed  PubMed Central  Google Scholar 

  13. Korshunov A, Neben K, Wrobel G, Tews B, Benner A, Hahn M et al (2003) Gene expression patterns in ependymomas correlate with tumor location, grade, and patient age. Am J Pathol 163(5):1721–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Palm T, Figarella-Branger D, Chapon F, Lacroix C, Gray F, Scaravilli F et al (2009) Expression profiling of ependymomas unravels localization and tumor grade-specific tumorigenesis. Cancer 115(17):3955–3968

    Article  CAS  PubMed  Google Scholar 

  15. Raghunathan A, Wani K, Armstrong TS, Vera-Bolanos E, Fouladi M, Gilbertson R et al (2013) Histological predictors of outcome in ependymoma are dependent on anatomic site within the central nervous system. Brain Pathol (Zurich, Switzerland) 23(5):584–594

    Article  Google Scholar 

  16. Singh PK, Gutmann DH, Fuller CE, Newsham IF, Perry A (2002) Differential involvement of protein 4.1 family members DAL-1 and NF2 in intracranial and intraspinal ependymomas. Mod Pathol 15(5):526–531

    Article  PubMed  Google Scholar 

  17. Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P et al (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8(4):323–335

    Article  CAS  PubMed  Google Scholar 

  18. Witt H, Mack SC, Ryzhova M, Bender S, Sill M, Isserlin R et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20(2):143–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lamszus K, Lachenmayer L, Heinemann U, Kluwe L, Finckh U, Hoppner W et al (2001) Molecular genetic alterations on chromosomes 11 and 22 in ependymomas. Int J Cancer 91(6):803–808

    Article  CAS  PubMed  Google Scholar 

  20. Ebert C, von Haken M, Meyer-Puttlitz B, Wiestler OD, Reifenberger G, Pietsch T et al (1999) Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am J Pathol 155(2):627–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ellis JA, Castelli M, Assanah M, Bruce JN, Canoll P, Ogden AT (2015) Unique microenvironmental responses to PDGF stimulation in brain and spinal cord gliomas determine tumor phenotype. J Neurooncol 123(1):27–33

    Article  CAS  PubMed  Google Scholar 

  22. Wilhelm I, Nyul-Toth A, Suciu M, Hermenean A, Krizbai IA (2016) Heterogeneity of the blood-brain barrier. Tissue Barriers 4(1):e1143544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lou N, Takano T, Pei Y, Xavier AL, Goldman SA, Nedergaard M (2016) Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier. Proc Natl Acad Sci U S A 113(4):1074–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M (2011) The blood-spinal cord barrier: morphology and clinical implications. Ann Neurol 70(2):194–206

    Article  PubMed  Google Scholar 

  25. Pardridge WM (2010) Biopharmaceutical drug targeting to the brain. J Drug Target 18(3):157–167

    Article  CAS  PubMed  Google Scholar 

  26. Davies DC (2002) Blood-brain barrier breakdown in septic encephalopathy and brain tumours. J Anat 200(6):639–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Margolin K, Ernstoff MS, Hamid O, Lawrence D, McDermott D, Puzanov I et al (2012) Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol 13(5):459–465

    Article  CAS  PubMed  Google Scholar 

  28. Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA et al (2010) Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res 16(23):5664–5678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458

    Article  CAS  PubMed  Google Scholar 

  30. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507

    Article  CAS  PubMed  Google Scholar 

  31. Wild R, Klems A, Takamiya M, Hayashi Y, Strahle U, Ando K et al (2017) Neuronal sFlt1 and Vegfaa determine venous sprouting and spinal cord vascularization. Nat Commun 8:13991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science (New York, NY) 284(5422):1994–1998

    Article  CAS  Google Scholar 

  33. Baeriswyl V, Christofori G (2009) The angiogenic switch in carcinogenesis. Semin Cancer Biol 19(5):329–337

    Article  CAS  PubMed  Google Scholar 

  34. Hardee ME, Zagzag D (2012) Mechanisms of glioma-associated neovascularization. Am J Pathol 181(4):1126–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bertolini F, Shaked Y, Mancuso P, Kerbel RS (2006) The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer 6(11):835–845

    Article  CAS  PubMed  Google Scholar 

  36. Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM et al (2006) Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science (New York, NY) 313(5794):1785–1787

    Article  CAS  Google Scholar 

  37. Duda DG, Cohen KS, Kozin SV, Perentes JY, Fukumura D, Scadden DT et al (2006) Evidence for incorporation of bone marrow-derived endothelial cells into perfused blood vessels in tumors. Blood 107(7):2774–2776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M et al (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8(3):211–226

    Article  PubMed  CAS  Google Scholar 

  39. Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468(7325):824–828

    Article  CAS  PubMed  Google Scholar 

  40. Veeravagu A, Bababeygy SR, Kalani MY, Hou LC, Tse V (2008) The cancer stem cell-vascular niche complex in brain tumor formation. Stem Cells Dev 17(5):859–867

    Article  PubMed  Google Scholar 

  41. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82

    Article  CAS  PubMed  Google Scholar 

  42. Farin A, Suzuki SO, Weiker M, Goldman JE, Bruce JN, Canoll P (2006) Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis. Glia 53(8):799–808

    Article  PubMed  Google Scholar 

  43. Alitalo K (2011) The lymphatic vasculature in disease. Nat Med 17(11):1371–1380

    Article  CAS  PubMed  Google Scholar 

  44. Antila S, Karaman S, Nurmi H, Airavaara M, Voutilainen MH, Mathivet T et al (2017) Development and plasticity of meningeal lymphatic vessels. J Exp Med 214(12):3645–3667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mondin V, Ferlito A, Devaney KO, Woolgar JA (2010) Rinaldo A. A survey of metastatic central nervous system tumors to cervical lymph nodes. Eur Arch Oto-Rhino-Laryngol 267(11):1657–1666

    Article  Google Scholar 

  46. Ha SK, Nair G, Absinta M, Luciano NJ, Reich DS (2018) Magnetic resonance imaging and histopathological visualization of human dural lymphatic vessels. Bio-Protoc 8(8):e2819

    Article  PubMed  PubMed Central  Google Scholar 

  47. Absinta M, Ha SK, Nair G, Sati P, Luciano NJ, Palisoc M et al (2017) Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife 6:e29738

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tamura R, Yoshida K, Toda M (2019) Current understanding of lymphatic vessels in the central nervous system. Neurosurg Rev

    Google Scholar 

  49. Iliff JJ, Goldman SA, Nedergaard M (2015) Implications of the discovery of brain lymphatic pathways. Lancet Neurol 14(10):977–979

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    Article  PubMed  Google Scholar 

  51. Yoon H, Walters G, Paulsen AR, Scarisbrick IA (2017) Astrocyte heterogeneity across the brain and spinal cord occurs developmentally, in adulthood and in response to demyelination. PLoS One 12(7):e0180697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sierra A, Price JE, Garcia-Ramirez M, Mendez O, Lopez L, Fabra A (1997) Astrocyte-derived cytokines contribute to the metastatic brain specificity of breast cancer cells. Lab Invest 77(4):357–368

    CAS  PubMed  Google Scholar 

  53. Placone AL, Quinones-Hinojosa A, Searson PC (2016) The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment. Tumour Biol 37(1):61–69

    Article  CAS  PubMed  Google Scholar 

  54. Hoelzinger DB, Demuth T, Berens ME (2007) Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst 99(21):1583–1593

    Article  CAS  PubMed  Google Scholar 

  55. Langley RR, Fan D, Guo L, Zhang C, Lin Q, Brantley EC et al (2009) Generation of an immortalized astrocyte cell line from H-2Kb-tsA58 mice to study the role of astrocytes in brain metastasis. Int J Oncol 35(4):665–672

    Article  CAS  PubMed  Google Scholar 

  56. Marchetti D, Li J, Shen R (2000) Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase. Cancer Res 60(17):4767–4770

    CAS  PubMed  Google Scholar 

  57. Le DM, Besson A, Fogg DK, Choi KS, Waisman DM, Goodyer CG et al (2003) Exploitation of astrocytes by glioma cells to facilitate invasiveness: a mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator-plasmin cascade. J Neurosci 23(10):4034–4043

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kostianovsky AM, Maier LM, Anderson RC, Bruce JN, Anderson DE (2008) Astrocytic regulation of human monocytic/microglial activation. J Immunol (Baltimore Md: 1950) 181(8):5425–5432

    Article  CAS  Google Scholar 

  59. Henrik Heiland D, Ravi VM, Behringer SP, Frenking JH, Wurm J, Joseph K et al (2019) Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat Commun 10(1):2541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bechmann I, Steiner B, Gimsa U, Mor G, Wolf S, Beyer M et al (2002) Astrocyte-induced T cell elimination is CD95 ligand dependent. J Neuroimmunol 132(1-2):60–65

    Article  CAS  PubMed  Google Scholar 

  61. Blanchart A, Fernando R, Haring M, Assaife-Lopes N, Romanov RA, Andang M et al (2017) Endogenous GABAA receptor activity suppresses glioma growth. Oncogene 36(6):777–786

    Article  CAS  PubMed  Google Scholar 

  62. Neman J, Termini J, Wilczynski S, Vaidehi N, Choy C, Kowolik CM et al (2014) Human breast cancer metastases to the brain display GABAergic properties in the neural niche. Proc Natl Acad Sci U S A 111(3):984–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S et al (2015) Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161(4):803–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Venkatesh HS, Tam LT, Woo PJ, Lennon J, Nagaraja S, Gillespie SM et al (2017) Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549(7673):533–537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wang Y, Yang J, Zheng H, Tomasek GJ, Zhang P, McKeever PE et al (2009) Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell 15(6):514–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14(11):1398–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G (2005) PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 7(9):870–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK et al (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153(1):139–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bexell D, Gunnarsson S, Tormin A, Darabi A, Gisselsson D, Roybon L et al (2009) Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol Ther 17(1):183–190

    Article  CAS  PubMed  Google Scholar 

  70. Bababeygy SR, Cheshier SH, Hou LC, Higgins DM, Weissman IL, Tse VC (2008) Hematopoietic stem cell-derived pericytic cells in brain tumor angio-architecture. Stem Cells Dev 17(1):11–18

    Article  CAS  PubMed  Google Scholar 

  71. Vieira de Castro J, Gomes ED, Granja S, Anjo SI, Baltazar F, Manadas B et al (2017) Impact of mesenchymal stem cells’ secretome on glioblastoma pathophysiology. J Transl Med 15(1):200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H et al (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11(14):1155–1164

    Article  CAS  PubMed  Google Scholar 

  73. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J et al (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65(8):3307–3318

    Article  CAS  PubMed  Google Scholar 

  74. Birnbaum T, Hildebrandt J, Nuebling G, Sostak P, Straube A (2011) Glioblastoma-dependent differentiation and angiogenic potential of human mesenchymal stem cells in vitro. J Neurooncol 105(1):57–65

    Article  CAS  PubMed  Google Scholar 

  75. Valdor R, Garcia-Bernal D, Bueno C, Rodenas M, Moraleda JM, Macian F et al (2017) Glioblastoma progression is assisted by induction of immunosuppressive function of pericytes through interaction with tumor cells. Oncotarget 8(40):68614–68626

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhou W, Chen C, Shi Y, Wu Q, Gimple RC, Fang X et al (2017) Targeting glioma stem cell-derived pericytes disrupts the blood-tumor barrier and improves chemotherapeutic efficacy. Cell Stem Cell 21(5):591–603.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sena IFG, Paiva AE, Prazeres P, Azevedo PO, Lousado L, Bhutia SK et al (2018) Glioblastoma-activated pericytes support tumor growth via immunosuppression. Cancer Med 7(4):1232–1239

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sattiraju A, Mintz A (2019) Pericytes in glioblastomas: multifaceted role within tumor microenvironments and potential for therapeutic interventions. Adv Exp Med Biol 1147:65–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Caspani EM, Crossley PH, Redondo-Garcia C, Martinez S (2014) Glioblastoma: a pathogenic crosstalk between tumor cells and pericytes. PLoS One 9(7):e101402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Graeber MB, Scheithauer BW, Kreutzberg GW (2002) Microglia in brain tumors. Glia 40(2):252–259

    Article  PubMed  Google Scholar 

  81. Hambardzumyan D, Gutmann DH, Kettenmann H (2016) The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19(1):20–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Weiss N, Miller F, Cazaubon S, Couraud PO (2009) The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 1788(4):842–857

    Article  CAS  PubMed  Google Scholar 

  83. Komohara Y, Ohnishi K, Kuratsu J, Takeya M (2008) Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 216(1):15–24

    Article  CAS  PubMed  Google Scholar 

  84. Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB (2006) The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol 8(3):261–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nakano Y, Kuroda E, Kito T, Uematsu S, Akira S, Yokota A et al (2008) Induction of prostaglandin E2 synthesis and microsomal prostaglandin E synthase-1 expression in murine microglia by glioma-derived soluble factors. Laboratory investigation. J Neurosurg 108(2):311–319

    Article  CAS  PubMed  Google Scholar 

  86. Badie B, Bartley B, Schartner J (2002) Differential expression of MHC class II and B7 costimulatory molecules by microglia in rodent gliomas. J Neuroimmunol 133(1-2):39–45

    Article  CAS  PubMed  Google Scholar 

  87. Markovic DS, Vinnakota K, Chirasani S, Synowitz M, Raguet H, Stock K et al (2009) Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci U S A 106(30):12530–12535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Held-Feindt J, Hattermann K, Muerkoster SS, Wedderkopp H, Knerlich-Lukoschus F, Ungefroren H et al (2010) CX3CR1 promotes recruitment of human glioma-infiltrating microglia/macrophages (GIMs). Exp Cell Res 316(9):1553–1566

    Article  CAS  PubMed  Google Scholar 

  89. Markovic DS, Glass R, Synowitz M, Rooijen N, Kettenmann H (2005) Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. J Neuropathol Exp Neurol 64(9):754–762

    Article  CAS  PubMed  Google Scholar 

  90. Bettinger I, Thanos S, Paulus W (2002) Microglia promote glioma migration. Acta Neuropathol 103(4):351–355

    Article  PubMed  Google Scholar 

  91. Murata J, Ricciardi-Castagnoli P, Dessous L’Eglise Mange P, Martin F, Juillerat-Jeanneret L (1997) Microglial cells induce cytotoxic effects toward colon carcinoma cells: measurement of tumor cytotoxicity with a gamma-glutamyl transpeptidase assay. Int J Cancer 70(2):169–174

    Article  CAS  PubMed  Google Scholar 

  92. Kanamori M, Kawaguchi T, Berger MS, Pieper RO (2006) Intracranial microenvironment reveals independent opposing functions of host alphaVbeta3 expression on glioma growth and angiogenesis. J Biol Chem 281(48):37256–37264

    Article  CAS  PubMed  Google Scholar 

  93. Galarneau H, Villeneuve J, Gowing G, Julien JP, Vallieres L (2007) Increased glioma growth in mice depleted of macrophages. Cancer Res 67(18):8874–8881

    Article  CAS  PubMed  Google Scholar 

  94. Poon CC, Sarkar S, Yong VW, Kelly JJP (2017) Glioblastoma-associated microglia and macrophages: targets for therapies to improve prognosis. Brain 140(6):1548–1560

    Article  PubMed  Google Scholar 

  95. Ulvestad E, Williams K, Bjerkvig R, Tiekotter K, Antel J, Matre R (1994) Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J Leukoc Biol 56(6):732–740

    Article  CAS  PubMed  Google Scholar 

  96. Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12(4):265–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN (2014) Clinical use of dendritic cells for cancer therapy. Lancet Oncol 15(7):e257–e267

    Article  CAS  PubMed  Google Scholar 

  98. Prins RM, Soto H, Konkankit V, Odesa SK, Eskin A, Yong WH et al (2011) Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin Cancer Res 17(6):1603–1615

    Article  CAS  PubMed  Google Scholar 

  99. Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovannone AJ et al (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11(15):5515–5525

    Article  CAS  PubMed  Google Scholar 

  100. Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64(14):4973–4979

    Article  CAS  PubMed  Google Scholar 

  101. Mitchell DA, Batich KA, Gunn MD, Huang MN, Sanchez-Perez L, Nair SK et al (2015) Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519(7543):366–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Coffelt SB, Wellenstein MD, de Visser KE (2016) Neutrophils in cancer: neutral no more. Nat Rev Cancer 16(7):431–446

    Article  CAS  PubMed  Google Scholar 

  103. Liang J, Piao Y, Holmes L, Fuller GN, Henry V, Tiao N et al (2014) Neutrophils promote the malignant glioma phenotype through S100A4. Clin Cancer Res 20(1):187–198

    Article  CAS  PubMed  Google Scholar 

  104. Bambury RM, Teo MY, Power DG, Yusuf A, Murray S, Battley JE et al (2013) The association of pre-treatment neutrophil to lymphocyte ratio with overall survival in patients with glioblastoma multiforme. J Neurooncol 114(1):149–154

    Article  CAS  PubMed  Google Scholar 

  105. Bertaut A, Truntzer C, Madkouri R, Kaderbhai CG, Derangere V, Vincent J et al (2016) Blood baseline neutrophil count predicts bevacizumab efficacy in glioblastoma. Oncotarget 7(43):70948–70958

    Article  PubMed  PubMed Central  Google Scholar 

  106. Mitsuya K, Nakasu Y, Kurakane T, Hayashi N, Harada H, Nozaki K (2017) Elevated preoperative neutrophil-to-lymphocyte ratio as a predictor of worse survival after resection in patients with brain metastasis. J Neurosurg 127(2):433–437

    Article  PubMed  Google Scholar 

  107. Rahbar A, Cederarv M, Wolmer-Solberg N, Tammik C, Stragliotto G, Peredo I et al (2016) Enhanced neutrophil activity is associated with shorter time to tumor progression in glioblastoma patients. Oncoimmunology 5(2):e1075693

    Article  PubMed  CAS  Google Scholar 

  108. Albulescu R, Codrici E, Popescu ID, Mihai S, Necula LG, Petrescu D et al (2013) Cytokine patterns in brain tumour progression. Mediators Inflamm 2013:979748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Hor WS, Huang WL, Lin YS, Yang BC (2003) Cross-talk between tumor cells and neutrophils through the Fas (APO-1, CD95)/FasL system: human glioma cells enhance cell viability and stimulate cytokine production in neutrophils. J Leukoc Biol 73(3):363–368

    Article  CAS  PubMed  Google Scholar 

  110. Otvos B, Silver DJ, Mulkearns-Hubert EE, Alvarado AG, Turaga SM, Sorensen MD et al (2016) Cancer stem cell-secreted macrophage migration inhibitory factor stimulates myeloid derived suppressor cell function and facilitates glioblastoma immune evasion. Stem cells (Dayton, Ohio) 34(8):2026–2039

    Article  CAS  Google Scholar 

  111. Iwatsuki K, Kumara E, Yoshimine T, Nakagawa H, Sato M, Hayakawa T (2000) Elastase expression by infiltrating neutrophils in gliomas. Neurol Res 22(5):465–468

    Article  CAS  PubMed  Google Scholar 

  112. Chen Z, Hambardzumyan D (2018) Immune microenvironment in glioblastoma subtypes. Front Immunol 9:1004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Han S, Ma E, Wang X, Yu C, Dong T, Zhan W et al (2016) Rescuing defective tumor-infiltrating T-cell proliferation in glioblastoma patients. Oncol Lett 12(4):2924–2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Masson F, Calzascia T, Di Berardino-Besson W, de Tribolet N, Dietrich PY, Walker PR (2007) Brain microenvironment promotes the final functional maturation of tumor-specific effector CD8+ T cells. J Immunol (Baltimore Md : 1950). 179(2):845–853

    Article  CAS  Google Scholar 

  115. Cohen JV, Kluger HM (2016) Systemic immunotherapy for the treatment of brain metastases. Front Oncol 6:49

    Article  PubMed  PubMed Central  Google Scholar 

  116. Fecci PE, Ochiai H, Mitchell DA, Grossi PM, Sweeney AE, Archer GE et al (2007) Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 13(7):2158–2167

    Article  CAS  PubMed  Google Scholar 

  117. Murphy KA, Lechner MG, Popescu FE, Bedi J, Decker SA, Hu P et al (2012) An in vivo immunotherapy screen of costimulatory molecules identifies Fc-OX40L as a potent reagent for the treatment of established murine gliomas. Clin Cancer Res 18(17):4657–4668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fecci PE, Sweeney AE, Grossi PM, Nair SK, Learn CA, Mitchell DA et al (2006) Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells. Clin Cancer Res 12(14 Pt 1):4294–4305

    Article  CAS  PubMed  Google Scholar 

  119. Kundu S, Xiong A, Spyrou A, Wicher G, Marinescu VD, Edqvist PD et al (2016) Heparanase promotes glioma progression and is inversely correlated with patient survival. Mol Cancer Res 14(12):1243–1253

    Article  CAS  PubMed  Google Scholar 

  120. Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J et al (2015) Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol 17(2):170–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mustafa DA, Dekker LJ, Stingl C, Kremer A, Stoop M, Sillevis Smitt PA et al (2012) A proteome comparison between physiological angiogenesis and angiogenesis in glioblastoma. Mol Cell Proteomics 11(6):M111.008466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Brosicke N, Faissner A (2015) Role of tenascins in the ECM of gliomas. Cell Adh Migr 9(1-2):131–140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Joyce JA (2015) Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science (New York, NY) 348(6230):74–80

    Article  CAS  Google Scholar 

  124. Miroshnikova YA, Mouw JK, Barnes JM, Pickup MW, Lakins JN, Kim Y et al (2016) Tissue mechanics promote IDH1-dependent HIF1alpha-tenascin C feedback to regulate glioblastoma aggression. Nat Cell Biol 18(12):1336–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shimizu T, Kurozumi K, Ishida J, Ichikawa T, Date I (2016) Adhesion molecules and the extracellular matrix as drug targets for glioma. Brain Tumor Pathol 33(2):97–106

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurèl Rauschenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rauschenbach, L. (2020). Spinal Cord Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironments in Organs. Advances in Experimental Medicine and Biology, vol 1226. Springer, Cham. https://doi.org/10.1007/978-3-030-36214-0_8

Download citation

Publish with us

Policies and ethics