Skip to main content

Parathyroid Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironments in Organs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1226))

Abstract

Parathyroid tumors are the second most common endocrine neoplasia, and it is almost always associated with hypersecretion of the parathormone (PTH), involved in calcium homeostasis, causing primary hyperparathyroidism (PHPT). Parathyroid neoplasia has a stromal component particularly represented in atypical adenomatous and carcinomatous lesions. Recently, data about the features and the function of the parathyroid tumor microenvironment (TME) have been accumulated. Parathyroid TME includes heterogeneous cells: endothelial cells, myofibroblasts, lymphocytes and macrophages, and mesenchymal stem cells have been identified, each of them presenting a phenotype consistent with tumor-associated cells. Parathyroid tumors overexpress proangiogenic molecules including vascular endothelial growth factor (VEGF-A), fibroblast growth factor-2 (FGF-2), and angiopoietins that promote both recruitment and proliferation of endothelial cell precursors, thus resulting in a microvessel density higher than that detected in normal parathyroid glands. Moreover, parathyroid tumor endocrine cells operate multifaceted interactions with stromal cells, partly mediated by the CXCL12/CXCR4 pathway, while, at present, the immune landscape of parathyroid tumors has just begun to be investigated. Studies about TME in parathyroid adenomas provide an example of the role of TME in benign tumors, whose molecular mechanisms and functions comprehension are limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alamoud KA, Kukuruzinska MA (2018) Emerging insights into Wnt/β-catenin signaling in head and neck cancer. J Dent Res 97:665–673. https://doi.org/10.1177/0022034518771923

    Article  CAS  PubMed  Google Scholar 

  2. Bilezikian JP (2018) Primary hyperparathyroidism. J Clin Endocrinol Metab 103:3993–4004. https://doi.org/10.1210/jc.2018-01225

    Article  PubMed  PubMed Central  Google Scholar 

  3. Salcuni AS, Cetani F, Guarnieri V, Nicastro V, Romagnoli E, de Martino D et al (2018) Parathyroid carcinoma. Best Pract Res Clin Endocrinol Metab 32:877–889. https://doi.org/10.1016/j.beem.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  4. Cetani F, Pardi E, Marcocci C (2019a) Parathyroid carcinoma. Front Horm Res 51:63–76. https://doi.org/10.1159/000491039

    Article  CAS  PubMed  Google Scholar 

  5. Cetani F, Marcocci C, Torregrossa L, Pardi E (2019b. pii: ERC-19-0135.R2) Atypical parathyroid adenomas: challenging lesions in the differential diagnosis of endocrine tumors. Endocr Relat Cancer. https://doi.org/10.1530/ERC-19-0135

    Article  CAS  Google Scholar 

  6. Christakis I, Bussaidy N, Clarke C, Kwatampora LJ, Warneke CL, Silva AM, Williams MD, Grubbs EG, Lee JE, Perrier ND (2016) Differentiating atypical parathyroid neoplasm from parathyroid cancer. Ann Surg Oncol 23:2889–2897. https://doi.org/10.1245/s10434-016-5248-6

    Article  PubMed  Google Scholar 

  7. Chen H, Senda T, Emura S, Kubo K (2013) An update on the structure of the parathyroid gland. Open Anat J 3:1–9

    Article  Google Scholar 

  8. DeLellis R, Larsson C, Arnold A, Lloy R, Bilezikian J, Mete O, Eng C (2017) Tumors of the parathyroid glands. In: Lloyd R, Osamura R, Kloppel G, Rosai J (eds) WHO Classification of tumors of endocrine organs, 4th edn. IARC Press, Lyon, pp 145–159

    Google Scholar 

  9. Duan K, Gomez Hernandez K, Mete O (2015) Clinicopathological correlates of hyperparathyroidism. J Clin Pathol 68:771–787. https://doi.org/10.1136/jclinpath-2015-203186

    Article  CAS  PubMed  Google Scholar 

  10. Yuan Y (2016) Spatial heterogeneity in the tumor microenvironment. Cold Spring Harb Perspect Med:6. pii:a026583. https://doi.org/10.1101/cshperspect.a026583

    Article  Google Scholar 

  11. Goradel NH, Asghari MH, Moloudizargari M, Negahdari B, Haghi-Aminjan H, Abdollahi M (2017) Melatonin as an angiogenesis inhibitor to combat cancer: mechanistic evidence. Toxicol Appl Pharmacol 335:56–63. https://doi.org/10.1016/j.taap.2017.09.022

    Article  CAS  PubMed  Google Scholar 

  12. Carter WB, Uy K, Ward MD, Hoying JB (2000) Parathyroid-induced angiogenesis is VEGF-dependent. Surgery 128:458–464. https://doi.org/10.1067/msy.2000.107102

    Article  CAS  PubMed  Google Scholar 

  13. Ander SJ, Blomkvist LM, Mölne JC, Johansson KJ, Smeds SP (1997) Growth and function of human parathyroid tissue transplanted to athymic mice. J Endocrinol Invest 20:640–647. https://doi.org/10.1007/BF03348025

    Article  CAS  PubMed  Google Scholar 

  14. Garcia de la Torre N, Buley I, Wass JA, Jackson DG, Turner HE (2004) Angiogenesis and lymphangiogenesis in parathyroid proliferative lesions. J Clin Endocrinol Metab 89:2890–2896. https://doi.org/10.1210/jc.2003-031651

    Article  CAS  PubMed  Google Scholar 

  15. Viacava P, Bocci G, Fanelli G, Cetani F, Marcocci C, Bevilacqua G, Naccarato AG (2006) Microvessel density in human normal and neoplastic parathyroids. Endocr Pathol 17:175–181

    Article  Google Scholar 

  16. Segiet OA, Michalski M, Brzozowa-Zasada M, Piecuch A, Żaba M, Helewski K, Gabriel A, Wojnicz R (2015) Angiogenesis in primary hyperparathyroidism. Ann Diagn Pathol 19:91–98. https://doi.org/10.1016/j.anndiagpath.2015.01.002

    Article  PubMed  Google Scholar 

  17. Zaruba MM, Huber BC, Brunner S, Deindl E, David R, Fischer R et al (2008) Parathyroid hormone treatment after myocardial infarction promotes cardiac repair by enhanced neovascularization and cell survival. Cardiovasc Res 77:722–731. https://doi.org/10.1093/cvr/cvm080

    Article  CAS  PubMed  Google Scholar 

  18. Huber BC, Brunner S, Segeth A, Nathan P, Fischer R, Zaruba MM et al (2011) Parathyroid hormone is a DPP-IV inhibitor and increases SDF-1-driven homing of CXCR4(+) stem cells into the ischaemic heart. Cardiovasc Res 90:529–537. https://doi.org/10.1093/cvr/cvr014

    Article  CAS  PubMed  Google Scholar 

  19. Grabmaier U, Brandl L, Kreiner J, Negele T, Huber BC, Rimmbach C et al (2014) Increased numbers of bone marrow-derived cells in parathyroid adenoma. Eur J Clin Invest 44:833–839. https://doi.org/10.1111/eci.12302

    Article  CAS  PubMed  Google Scholar 

  20. Corbetta S, Belicchi M, Pisati F, Meregalli M, Eller-Vainicher C, Vicentini L et al (2009) Expression of parathyroid-specific genes in vascular endothelial progenitors of normal and tumoral parathyroid glands. Am J Pathol 175:1200–1207. https://doi.org/10.2353/ajpath.2009.080979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shi Y, Hogue J, Dixit D, Koh J, Olson JA (2014) Functional and genetic studies of isolated cells from parathyroid tumors reveal the complex pathogenesis of parathyroid neoplasia. Proc Nat Am Soc USA 111:3092–3097. https://doi.org/10.1073/pnas.1319742111

    Article  CAS  Google Scholar 

  22. Haglund F, Hallström BM, Nilsson IL, Höög A, Juhlin CC, Larsson C (2017) Inflammatory infiltrates in parathyroid tumors. Eur J Endocrinol 177:445–453. https://doi.org/10.1530/EJE-17-0277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Najafi M, Goradel NH, Farhood B, Salehi E, Solhjoo S, Toolee H, Kharazinejad E, Mortezaee K (2019) Tumor microenvironment: Interactions and therapy. J Cell Physiol 234:5700–5721. https://doi.org/10.1002/jcp.27425

    Article  CAS  PubMed  Google Scholar 

  24. Kato T, Noma K, Ohara T, Kashima H, Katsura Y, Sato H et al (2018) Cancer-associated fibroblasts affect intratumoral CD8+ and FoxP3+ T cells via interleukin 6 in the tumor microenvironment. Clin Cancer Res 24:4820–4833. https://doi.org/10.1158/1078-0432.CCR-18-0205

    Article  CAS  PubMed  Google Scholar 

  25. Silva-Figueroa A, Villalobos P, Williams MD, Bassett RL, Clarke CN, Lee JE et al (2018) Characterizing parathyroid carcinomas and atypical neoplasms based on the expression of programmed death-ligand 1 expression and the presence of tumor-infiltrating lymphocytes and macrophages. Surgery 164:960–964. https://doi.org/10.1016/j.surg.2018.06.013

    Article  PubMed  Google Scholar 

  26. Franklin RA, Li MO (2014) The ontogeny of tumor-associated macrophages: a new understanding of cancer-elicited inflammation. Oncoimmunology 3:e955346. https://doi.org/10.4161/21624011.2014.955346

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pan B, Wang A, Pang J, Zhang Y, Cui M, Sun J, Liang Z (2019) Programmed death ligand 1 (PD-L1) expression in parathyroid tumors. Endocr Connect 8:887–897. https://doi.org/10.1530/EC-19-0163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bu L, Baba H, Yoshida N, Miyake K, Yasuda T, Uchihara T, Tan P, Ishimoto T (2019) Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene 38:4887–4901. https://doi.org/10.1038/s41388-019-0765-y

    Article  CAS  PubMed  Google Scholar 

  29. Kidd S, Spaeth E, Watson K, Burks J, Lu H, Klopp A et al (2012) Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow derived stroma. PLoS One 7:e30563

    Article  CAS  Google Scholar 

  30. Verdelli C, Avagliano L, Creo P, Guarnieri V, Scillitani A, Vicentini L et al (2015) Tumour-associated fibroblasts contribute to neoangiogenesis in human parathyroid neoplasia. Endocr Relat Cancer 22:87–98. https://doi.org/10.1530/ERC-14-0161

    Article  CAS  PubMed  Google Scholar 

  31. Burger JA, Stewart DJ, Wald O, Peled A (2011) Potential of CXCR4 antagonists for the treatment of metastatic lung cancer. Expert Rev Anticancer Ther 11:621–630. https://doi.org/10.1586/era.11.11

    Article  CAS  PubMed  Google Scholar 

  32. De Clercq E (2019) Mozobil® (Plerixafor, AMD3100), 10 years after its approval by the US Food and Drug Administration. Antivir Chem Chemother 27:2040206619829382. https://doi.org/10.1177/2040206619829382

    Article  PubMed  PubMed Central  Google Scholar 

  33. Duda DG, Kozin SV, Kirkpatrick ND, Xu L, Fukumura D, Jain RK (2011) CXCL12 (SDF1a)–CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin Cancer Res 17:2074–2080. https://doi.org/10.1158/1078-0432.CCR-10-2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shih YR, Kuo TK, Yang AH, Lee OK, Lee CH (2009) Isolation and characterization of stem cells from the human parathyroid gland. Cell Prolif 42:461–470. https://doi.org/10.1111/j.1365-2184.2009.00614.x

    Article  CAS  PubMed  Google Scholar 

  35. Suárez Y, Fernández-Hernando C, Pober JS, Sessa WC (2007) Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 100:1164–1173. https://doi.org/10.1161/01.RES.0000265065.26744.17

    Article  CAS  PubMed  Google Scholar 

  36. Goradel NH, Mohammadi N, Haghi-Aminjan H, Farhood B, Negahdari B, Sahebkar A (2019) Regulation of tumor angiogenesis by microRNAs: State of the art. J Cell Physiol 234:1099–1110. https://doi.org/10.1002/jcp.27051

    Article  CAS  PubMed  Google Scholar 

  37. Corbetta S, Vaira V, Guarnieri V, Scillitani A, Eller-Vainicher C, Ferrero S et al (2010) Differential expression of microRNAs in human parathyroid carcinomas compared with normal parathyroid tissue. Endocr Relat Cancer 17:135–146. https://doi.org/10.1677/ERC-09-0134

    Article  CAS  PubMed  Google Scholar 

  38. Hu Y, Zhang X, Cui M, Su Z, Wang M, Liao Q, Zhao Y (2018) Verification of candidate microRNA markers for parathyroid carcinoma. Endocrine 60:246–254. https://doi.org/10.1007/s12020-018-1551-2

    Article  CAS  PubMed  Google Scholar 

  39. Rahbari R, Holloway AK, He M, Khanafshar E, Clark OH, Kebebew E (2011) Identification of differentially expressed microRNA in parathyroid tumors. Ann Surg Oncol 18:1158–1165. https://doi.org/10.1245/s10434-010-1359-7

    Article  PubMed  Google Scholar 

  40. Vaira V, Elli F, Forno I, Guarnieri V, Verdelli C, Ferrero S, Scillitani A, Vicentini L, Cetani F, Mantovani G, Spada A, Bosari S, Corbetta S (2012) The microRNA cluster C19MC is deregulated in parathyroid tumours. J Mol Endocrinol 49:115–124. https://doi.org/10.1530/JME-11-0189

    Article  CAS  PubMed  Google Scholar 

  41. Verdelli C, Forno I, Morotti A, Creo P, Guarnieri V, Scillitani A, Cetani F, Vicentini L, Balza G, Beretta E, Ferrero S, Vaira V, Corbetta S (2018) The aberrantly expressed miR-372 partly impairs sensitivity to apoptosis in parathyroid tumor cells. Endocr Relat Cancer 25:761–771. https://doi.org/10.1530/ERC-17-0204

    Article  CAS  PubMed  Google Scholar 

  42. Qin A, Wen Z, Zhou Y, Li Y, Li Y, Luo J et al (2013) MicroRNA-126 regulates the induction and function of CD4(+) Foxp3(+) regulatory T cells through PI3K/AKT pathway. J Cell Mol Med 17:252–264. https://doi.org/10.1111/jcmm.12003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Verghese ET, Drury R, Green CA, Holliday DL, Lu X, Nash C et al (2013) MiR-26b is down-regulated in carcinoma-associated fibroblasts from ER-positive breast cancers leading to enhanced cell migration and invasion. J Pathol 231:388–399. https://doi.org/10.1002/path.4248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Suzuki HI, Katsura A, Matsuyama H, Miyazono K (2015) MicroRNA regulons in tumor microenvironment. Oncogene 34:3085–3094. https://doi.org/10.1038/onc.2014.254

    Article  CAS  PubMed  Google Scholar 

  45. Hwang S, Jeong JJ, Kim SH, Chung YJ, Song SY, Lee YJ, Rhee Y (2018) Differential expression of miRNA199b-5p as a novel biomarker for sporadic and hereditary parathyroid tumors. Sci Rep 8:12016. https://doi.org/10.1038/s41598-018-30484-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16:582–598. https://doi.org/10.1038/nrc.2016.73

    Article  CAS  Google Scholar 

  47. Li P, Gong Z, Shultz LD, Ren G (2019) Mesenchymal stem cells: From regeneration to cancer. Pharmacol Ther 200:42–54. https://doi.org/10.1016/j.pharmthera.2019.04.005

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Corbetta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verdelli, C., Vaira, V., Corbetta, S. (2020). Parathyroid Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironments in Organs. Advances in Experimental Medicine and Biology, vol 1226. Springer, Cham. https://doi.org/10.1007/978-3-030-36214-0_3

Download citation

Publish with us

Policies and ethics