Skip to main content

Smoother Soft-NMS for Overlapping Object Detection in X-Ray Images

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Visual Data Engineering (IScIDE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11935))

Abstract

As a contactless security technology, X-ray security inspection machine is widely used in the detection of dangerous object in all kinds of densely populated public places to ensure the safety. Unlike a natural image, various objects overlapping with each other can be observed in an X-ray image for its perspectivity. It brings us a challenge that the traditional NMS (Non-maximum suppression) algorithm will suppress the less significant objects. In this paper, we propose a Smoother Soft NMS based on the difference in aspect ratios and areas of different object bounding boxes to improve the accuracy of overlapping object detection. We also propose a special data augmentation method to simulate the generation of complex samples of overlapping objects. On our dataset, we boost the mean Average Precision of ResNet-101 FPN from 89.44% to 96.67% and Cascade R-CNN from 96.43% to 97.21%. Detector trained by Smoother Soft NMS has a significant improvement in overlapping cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. (CSUR) 35(4), 399–458 (2003)

    Article  Google Scholar 

  2. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  3. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: Null, p. 1470. IEEE (2003)

    Google Scholar 

  4. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  5. Bouwmans, T., Zahzah, E.H.: Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance. Comput. Vis. Image Underst. 122, 22–34 (2014)

    Article  Google Scholar 

  6. Ma, X., et al.: Vehicle traffic driven camera placement for better metropolis security surveillance. In: IEEE Intelligent Systems (2018)

    Google Scholar 

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  9. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. arXiv preprint arXiv:1512.00567 (2015)

  10. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261 (2016)

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)

  12. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp. 580–587 (2014)

    Google Scholar 

  13. Girshick, R.B.: Fast R-CNN. In: ICCV, pp. 1440–1448 (2015)

    Google Scholar 

  14. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99 (2015)

    Google Scholar 

  15. Redmon, J., Divvala, S., Girshick, R., et al.: You Only Look Once: Unified, Real-Time Object Detection. ArXiv preprint arXiv:1506.02640

  16. Liu, W., et al.: SSD: Single Shot MultiBox Detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  17. He, K., Gkioxari, G., Dollár, P., et al.: Mask R-CNN. In: IEEE International Conference on Computer Vision, pp. 2980–2988. IEEE Computer Society (2017)

    Google Scholar 

  18. Rosenfeld, A., Thurston, M.: Edge and curve detection for visual scene analysis. IEEE Trans. Comput. 5, 562–569 (1971)

    Article  Google Scholar 

  19. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS improving object detection with one line of code. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5562–5570. IEEE (2017)

    Google Scholar 

  20. Lin, T.Y., Dollár, P., Girshick, R., et al.: Feature Pyramid Networks for Object Detection. ArXiv preprint arXiv:1612.03144

  21. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 761–769 (2016)

    Google Scholar 

  22. Wang, X., Shrivastava, A., Gupta, A.: A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection. ArXiv preprint arXiv:1704.03414

  23. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In: International Conference on Neural Information Processing Systems, pp. 2672–2680. MIT Press (2014)

    Google Scholar 

  24. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  25. Cai, Z.: Nuno Vasconcelos. Cascade R-CNN: Delving into high quality object detection. ArXiv preprint arXiv:1712.00726

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhui Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, C., Bao, X., Zhou, X. (2019). Smoother Soft-NMS for Overlapping Object Detection in X-Ray Images. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Visual Data Engineering. IScIDE 2019. Lecture Notes in Computer Science(), vol 11935. Springer, Cham. https://doi.org/10.1007/978-3-030-36189-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36189-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36188-4

  • Online ISBN: 978-3-030-36189-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics