Skip to main content

Investigation of the Most Effective Meta-Heuristic Optimization Technique for Constrained Engineering Problems

  • Conference paper
  • First Online:
Artificial Intelligence and Applied Mathematics in Engineering Problems (ICAIAME 2019)

Abstract

One of the most common areas of meta-heuristic search (MHS) algorithms is optimization problems. In addition, the performance of only a few of the hundreds of MHS algorithms in the literature is known for constrained engineering design problems. The reason for this is that in most of the studies in which MHS algorithms have been developed, only classical benchmark problems are used to test the performance of the algorithms. Besides, applying MHS techniques to engineering problems is a costly and difficult process. This clearly demonstrates the importance of investigating the performance of new and powerful MHS techniques in engineering problems. In this paper, we investigate the search performance of the most recent and powerful MHS techniques in the literature on constrained engineering problems. In experimental studies, 20 different MHS techniques and five constrained engineering problems most commonly used in the literature have been used. Wilcoxon Runk Sum Test was used to compare the performance of the algorithms. The results show that the performance of MHS algorithms in classical benchmark problems and their performance in constrained engineering problems do not exactly match.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han, X., Liu, Q., Wang, H., Wang, L.: Novel fruit fly optimization algorithm with trend search and co-evolution. Knowl.-Based Syst. 141, 1–17 (2018)

    Article  Google Scholar 

  2. Tian, D., Shi, Z.: MPSO: modified particle swarm optimization and its applications. Swarm Evol. Comput. 41, 49–68 (2018)

    Article  Google Scholar 

  3. Sun, G., Ma, P., Ren, J., Zhang, A., Jia, X.: A stability constrained adaptive alpha for gravitational search algorithm. Knowl.-Based Syst. 139, 200–213 (2018)

    Article  Google Scholar 

  4. Tang, D., Liu, Z., Yang, J., Zhao, J.: Memetic frog leaping algorithm for global optimization. Soft. Comput. 23, 1–29 (2018)

    Google Scholar 

  5. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  6. Martin, L., Leblanc, R., Toan, N.K.: Tables for the Friedman rank test. Can. J. Stat. 21(1), 39–43 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hooker, J.N.: Testing heuristics: we have it all wrong. J. Heuristics 1(1), 33–42 (1995)

    Article  MATH  Google Scholar 

  8. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  9. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  MATH  Google Scholar 

  10. He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 20(1), 89–99 (2007)

    Article  Google Scholar 

  11. Mezura, M.E., Coello, C.: An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int. J. Gen Syst 37(4), 443–473 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coello, C.A.C.: Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 41(2), 113–127 (2000)

    Article  Google Scholar 

  13. Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188(2), 1567–1579 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Huang, F.Z., Wang, L., He, Q.: An effective co-evolutionary differential evolution for constrained optimization. Appl. Math. Comput. 186(1), 340–356 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Arora, S., Singh, S.: Butterfly optimization algorithm: a novel approach for global optimization. Soft. Comput. 23(3), 715–734 (2019)

    Article  Google Scholar 

  16. Gandomi, A.H., Yun, G.J., Yang, X.S., Talatahari, S.: Chaos-enhanced accelerated particle swarm optimization. Commun. Nonlinear Sci. Numer. Simul. 18(2), 327–340 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013)

    Article  Google Scholar 

  18. Parsopoulos, K.E., Vrahatis, M.N.: Unified particle swarm optimization for solving constrained engineering optimization problems. In: Wang, L., Chen, K., Ong, Y.S. (eds.) Advances in Natural Computation, pp. 582–591. Springer, Berlin (2005)

    Google Scholar 

  19. Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inf. 45, 26–30 (1996)

    Google Scholar 

  20. Zhang, C., Wang, H.: Mixed-discrete nonlinear optimization with simulated annealing. Eng. Optim. 21(277), 91 (1993)

    Google Scholar 

  21. Çivicioğlu Beşdok, P., Beşdok, E., Günen, M.A., Atasever, Ü.H.: Weighted differential evolution algorithm for numerical function optimization: a comparative study with cuckoo search, artificial bee colony, adaptive differential evolution, and backtracking search optimization algorithms. Neural Comput. Appl. 1–15 (2018)

    Google Scholar 

  22. Civicioglu, P.: Artificial cooperative search algorithm for numerical optimization problems. Inf. Sci. 229, 58–76 (2013)

    Article  MATH  Google Scholar 

  23. Wang, Y., Liu, Z.Z., Li, J.: Utilizing cumulative population distribution information in differential evolution. Appl. Soft Comput. 48, 329–346 (2016)

    Article  Google Scholar 

  24. Civicioglu, P., Besdok, E.: A+ evolutionary search algorithm and QR decomposition based rotation invariant crossover operator. Exp. Syst. Appl. 103, 49–62 (2018)

    Article  Google Scholar 

  25. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

    Article  Google Scholar 

  27. Civicioglu, P.: Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219, 8121–8144 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Singh, P.R., Elaziz, M.A., Xiong, S.: Modified Spider Monkey Optimization based on Nelder-Mead method for global optimization. Exp. Syst. Appl. 110, 264–289 (2018)

    Article  Google Scholar 

  29. Cagnina, L.C., Esquivel, S.C., Coello, C.A.C.: Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica 32(3), 319–326 (2008)

    MATH  Google Scholar 

  30. Mortazavi, A., Toğan, V., Nuhoğlu, A.: Interactive search algorithm: a new hybrid metaheuristic optimization algorithm. Eng. Appl. Artif. Intell. 71, 275–292 (2018)

    Article  Google Scholar 

  31. Lim, W.H., Isa, N.A.M.: Two-layer particle swarm optimization with intelligent division of labor. Eng. Appl. Artif. Intell. 26(10), 2327–2348 (2013)

    Article  Google Scholar 

  32. Lim, W.H., Isa, N.A.M.: Particle swarm optimization with increasing topology connectivity. Eng. Appl. Artif. Intell. 27, 80–102 (2014)

    Article  Google Scholar 

  33. Parsopoulos, K.E., Vrahatis, M.N.: Unified particle swarm optimization for solving constrained engineering optimization problems. In: International Conference on Natural Computation, pp. 582–591. Springer, Heidelberg (2005)

    Google Scholar 

  34. Mortazavi, A., Toğan, V., Nuhoğlu, A.: Interactive search algorithm: a new hybrid metaheuristic optimization algorithm. Eng. Appl. Artif. Intell. 71, 275–292 (2018)

    Article  Google Scholar 

  35. Sadollah, A., Bahreininejad, A., Eskandar, H., Hamdi, M.: Mine blast algorithm for optimization of truss structures with discrete variables. Comput. Struct. 102, 49–63 (2012)

    Article  Google Scholar 

  36. Rao, R.V., Waghmare, G.G.: Complex constrained design optimisation using an elitist teaching-learning-based optimisation algorithm. IJMHeur 3(1), 81–102 (2014)

    Article  Google Scholar 

  37. Montes Montes, E., Coello, C.A.C., Velazquez Reyes, J.: Increasing successful offspring and diversity in differential evolution for engineering design. In: Seventh International Conference on Adaptive Computing in Design and Manufacture, pp. 131–139 (2006)

    Google Scholar 

  38. Wu, L., Liu, Q., Tian, X., Zhang, J., Xiao, W.: A new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problems. Knowl.-Based Syst. 144, 153–173 (2018)

    Article  Google Scholar 

  39. Jiang, M., Yuan, D., Cheng, Y.: Improved artificial fish swarm algorithm. In: IEEE Fifth International Conference on Natural Computation, ICNC, vol. 4, pp. 281–285 (2009)

    Google Scholar 

  40. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Article  Google Scholar 

  41. Pan, Q.K., Suganthan, P.N., Liang, J.J., Tasgetiren, M.F.: A local-best harmony search algorithm with dynamic subpopulations. Eng. Optim. 42(2), 101–117 (2010)

    Article  Google Scholar 

  42. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)

    Article  Google Scholar 

  43. Aydilek, İ.B.: A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Appl. Soft Comput. 66, 232–249 (2018)

    Article  Google Scholar 

  44. Ngo, T.T., Sadollah, A., Kim, J.H.: A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems. J. Comput. Sci. 13, 68–82 (2016)

    Article  MathSciNet  Google Scholar 

  45. Dhiman, G., Kumar, V.: Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl.-Based Syst. 159, 20–50 (2018)

    Google Scholar 

  46. Dhiman, G., Kumar, V.: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. 114, 48–70 (2017)

    Article  Google Scholar 

  47. Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-Verse Optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27(2), 495–513 (2016)

    Article  Google Scholar 

  48. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)

    Article  Google Scholar 

  49. Sadollah, A., Sayyaadi, H., Yoo, D.G., Lee, H.M., Kim, J.H.: Mine blast harmony search: a new hybrid optimization method for improving exploration and exploitation capabilities. Appl. Soft Comput. 68, 548–564 (2018)

    Article  Google Scholar 

  50. Sadollah, A., Bahreininejad, A., Eskandar, H., Hamdi, M.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13(5), 2592–2612 (2013)

    Article  Google Scholar 

  51. Liu, H., Cai, Z., Wang, Y.: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl. Soft Comput. 10(2), 629–640 (2010)

    Article  Google Scholar 

  52. Eskandar, H., Sadollah, A., Bahreininejad, A., Hamdi, M.: Water cycle algorithm–a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 110, 151–166 (2012)

    Article  Google Scholar 

  53. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-learning-based optimization: a novel mechanical design optimization problems. Comput. Aided Des. 43, 303–315 (2011)

    Article  Google Scholar 

  54. Moghdani, R., Salimifard, K.: Volleyball premier league algorithm. Appl. Soft Comput. 64, 161–185 (2018)

    Article  Google Scholar 

  55. Awad, N.H., Ali, M.Z., Mallipeddi, R., Suganthan, P.N.: An improved differential evolution algorithm using efficient adapted surrogate model for numerical optimization. Inf. Sci. 451, 326–347 (2018)

    Article  MathSciNet  Google Scholar 

  56. Long, W., Wu, T., Liang, X., Xu, S.: Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Exp. Syst. Appl. 123, 108–126 (2019)

    Article  Google Scholar 

  57. Dong, M., Wang, N., Cheng, X., Jiang, C.: Composite differential evolution with modified oracle penalty method for constrained optimization problems. Math. Probl. Eng. 1–15 (2014). https://doi.org/10.1155/2014/617905

  58. Amir M.: Towards an approach for effectively using intuition in large-scale decision-making problems. Ph.D. thesis, University of Debrecen (2013)

    Google Scholar 

  59. Lin, X., Zhang, F., Xu, L.: Design of gear reducer based on FOA optimization algorithm. In: International Conference on Smart Vehicular Technology, Transportation, Communication and Applications, pp. 240–247. Springer, Cham (2017)

    Google Scholar 

  60. Shareef, H., Ibrahim, A.A., Mutlag, A.H.: Lightning search algorithm. Appl. Soft Comput. 36, 315–333 (2015)

    Article  Google Scholar 

  61. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)

    Article  Google Scholar 

  62. Cheng, M.Y., Prayogo, D.: Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput. Struct. 139, 98–112 (2014)

    Article  Google Scholar 

  63. Chen, X., Xu, B.: Teaching-learning-based artificial bee colony. In: International Conference on Swarm Intelligence, pp. 166–178. Springer, Cham (2018)

    Google Scholar 

  64. Civicioglu, P.: Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput. Geosci. 46, 229–247 (2012)

    Article  Google Scholar 

  65. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  66. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  67. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Article  Google Scholar 

  68. Wang, G.G.: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput. 10, 151–164 (2018)

    Article  Google Scholar 

  69. Mittal, H., Pal, R., Kulhari, A., Saraswat, M.: Chaotic Kbest gravitational search algorithm (CKGSA). In: 2016 Ninth International Conference on Contemporary Computing (IC3), pp. 1–6. IEEE, August 2016

    Google Scholar 

  70. Pierezan, J., Coelho, L.S.: Coyote optimization algorithm: a new metaheuristic for global optimization problems. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, pp. 2633–2640 (2018)

    Google Scholar 

  71. Zhao, W., Wang, L., Zhang, Z.: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl.-Based Syst. 163, 283–304 (2019)

    Article  Google Scholar 

  72. Mirjalili, S., Gandomi, A.H.: Chaotic gravitational constants for the gravitational search algorithm. Appl. Soft Comput. 53, 407–419 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamdi Tolga Kahraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kahraman, H.T., Aras, S. (2020). Investigation of the Most Effective Meta-Heuristic Optimization Technique for Constrained Engineering Problems. In: Hemanth, D., Kose, U. (eds) Artificial Intelligence and Applied Mathematics in Engineering Problems. ICAIAME 2019. Lecture Notes on Data Engineering and Communications Technologies, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-36178-5_38

Download citation

Publish with us

Policies and ethics