Skip to main content

ROSS-LAN: RObotic Sensing Simulation Scheme for Bioinspired Robotic Bird LANding

  • Conference paper
  • First Online:
Robot 2019: Fourth Iberian Robotics Conference (ROBOT 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1093))

Included in the following conference series:

Abstract

Aerial robotics is evolving towards the design of bioinspired platforms capable of resembling the behavior of birds and insects during flight. The development of perception algorithms for navigation of ornithopters requires sensor data information to evaluate and solve the limitations presented during the flight of these platforms. However, the payload constraints and hardware complexity of ornithopters hamper the sensor data acquisition. This paper focuses on the development of a multi-sensor simulator to retrieve the sensor information captured during the landing maneuvers of ornithopters. The landing trajectory is computed by using a bioinspired trajectory generator relying on tau theory. Further, a dataset of the sensor information records obtained during the simulation of several landing trajectories is publicly available online.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://grvc.us.es/bioinspired-landing-trajectory-sensor-dataset/.

References

  1. Benosman, R., Clercq, C., Lagorce, X., Ieng, S., Bartolozzi, C.: Event-based visual flow. IEEE Trans. Neural Netw. Learn. Syst. 25(2), 407–417 (2014)

    Article  Google Scholar 

  2. Corporate, F.: Smartbird (2011). https://www.festo.com/net/SupportPortal/Files/46270/Brosch_SmartBird_en_8s_RZ_110311_lo.pdf

  3. Corporate, F.: Bionicflyingfox (2018). https://www.festo.com/net/SupportPortal/Files/492827/Festo_BionicFlyingFox_en.pdf

  4. Croon, G., Perçin, M., Remes, B., Ruijsink, R., Wagter, C.: The DelFly (2016)

    Google Scholar 

  5. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017)

    Google Scholar 

  6. Fei, F., Tu, Z., Yang, Y., Zhang, J., Deng, X.: Flappy hummingbird: an open source dynamic simulation of flapping wing robots and animals. arXiv preprint arXiv:1902.09628 (2019)

  7. Folkertsma, G., Straatman, W., Nijenhuis, N., Venner, C., Stramigioli, S.: Robird: a robotic bird of prey. IEEE Robot. Autom. Mag. 24(3), 22–29 (2017)

    Article  Google Scholar 

  8. Han, J., Lee, J., Kim, D.: Ornithopter modeling for flight simulation. In: 2008 International Conference on Control, Automation and Systems, pp. 1773–1777 (2008)

    Google Scholar 

  9. Kaiser, J., Tieck, J., Hubschneider, C., Wolf, P., Weber, M., Hoff, M., Friedrich, A., Wojtasik, K., Roennau, A., Kohlhaas, R., et al.: Towards a framework for end-to-end control of a simulated vehicle with spiking neural networks. In: 2016 IEEE International Conference on SIMPAR, pp. 127–134 (2016)

    Google Scholar 

  10. Kendoul, F.: Four-dimensional guidance and control of movement using time-to-contact: application to automated docking and landing of unmanned rotorcraft systems. Int. J. Robot. Res. 33(2), 237–267 (2014)

    Article  Google Scholar 

  11. Koenig, N., Howard, A.: Design and use paradigms for Gazebo, an open-source multi-robot simulator. In: IEEE/RSJ IROS 2004, vol. 3, pp. 2149–2154 (2004)

    Google Scholar 

  12. Kueng, B., Mueggler, E., Gallego, G., Scaramuzza, D.: Low-latency visual odometry using event-based feature tracks. In: IEEE/RSJ IROS 2016, pp. 16–23 (2016)

    Google Scholar 

  13. Lee, D.: General tau theory: evolution to date. Perception 38(6), 837 (2009)

    Article  Google Scholar 

  14. Lee, D., Bootsma, R., Land, M., Regan, D., Gray, R.: Lee’s 1976 paper. Perception 38(6), 837–858 (2009)

    Article  Google Scholar 

  15. Mueggler, E., Rebecq, H., Gallego, G., Delbruck, T., Scaramuzza, D.: The event-camera dataset and simulator: event-based data for pose estimation, visual odometry, and SLAM. Int. J. Robot. Res. 36(2), 142–149 (2017)

    Article  Google Scholar 

  16. Pfeiffer, A., Lee, J., Han, J., Baier, H.: Ornithopter flight simulation based on flexible multi-body dynamics. J. Bionic Eng. 7(1), 102–111 (2010)

    Article  Google Scholar 

  17. Rebecq, H., Gehrig, D., Scaramuzza, D.: ESIM: an open event camera simulator. In: Conference on Robot Learning, pp. 969–982 (2018)

    Google Scholar 

  18. Rebecq, H., Horstschäfer, T., Gallego, G., Scaramuzza, D.: EVO: a geometric approach to event-based 6-dof parallel tracking and mapping in real time. IEEE Robot. Autom. Lett. 2(2), 593–600 (2017)

    Article  Google Scholar 

  19. Rohmer, E., Singh, S.P., Freese, M.: V-REP: a versatile and scalable robot simulation framework. In: IEEE/RSJ IROS 2013, pp. 1321–1326 (2013)

    Google Scholar 

  20. Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical simulation for autonomous vehicles. In: Field and Service Robotics, pp. 621–635 (2018)

    Google Scholar 

  21. Vasco, V., Glover, A., Bartolozzi, C.: Fast event-based harris corner detection exploiting the advantages of event-driven cameras. In: IEEE/RSJ IROS 2016, pp. 4144–4149 (2016)

    Google Scholar 

  22. Vidal, A., Rebecq, H., Horstschaefer, T., Scaramuzza, D.: Ultimate SLAM? Combining events, images, and IMU for robust visual SLAM in HDR and high-speed scenarios. IEEE Robot. Autom. Lett. 3(2), 994–1001 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council as part of GRIFFIN ERC Advanced Grant 2017 (Action 788247) and the ARM-EXTEND project funded by the Spanish National RD plan (DPI2017-89790-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Rodríguez-Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodríguez-Gómez, J.P., Gómez Eguíluz, A., Martínez-de Dios, J.R., Ollero, A. (2020). ROSS-LAN: RObotic Sensing Simulation Scheme for Bioinspired Robotic Bird LANding. In: Silva, M., Luís Lima, J., Reis, L., Sanfeliu, A., Tardioli, D. (eds) Robot 2019: Fourth Iberian Robotics Conference. ROBOT 2019. Advances in Intelligent Systems and Computing, vol 1093. Springer, Cham. https://doi.org/10.1007/978-3-030-36150-1_5

Download citation

Publish with us

Policies and ethics