Socially-Accepted Path Planning for Robot Navigation Based on Social Interaction Spaces

  • Araceli Vega
  • Ramón Cintas
  • Luis J. Manso
  • Pablo Bustos
  • Pedro NúñezEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1093)


Path planning is one of the most widely studied problems in robot navigation. It deals with estimating an optimal set of waypoints from an initial to a target coordinate. New generations of assistive robots should be able to compute these paths considering not only obstacles but also social conventions. This ability is commonly referred to as social navigation. This paper describes a new socially-acceptable path-planning framework where robots avoid entering areas corresponding to the personal spaces of people, but most importantly, areas related to human-human and human-object interaction. To estimate the social cost of invading personal spaces we use the concept of proxemics. To model the social cost of invading areas where interaction is happening we include the concept of object interaction space. The framework uses Dijkstra’s algorithm on a uniform graph of free space where edges are weighed according to the social traversal cost of their outbound node. Experimental results demonstrate the validity of the proposal to plan socially-accepted paths.


Social navigation Path-planning Dijkstra 



This work has been partially supported by the National project RTI2018-099522-B-C42. by the Extremaduran Government projects GR15120, IB18056 and by the FEDER project 0043-EUROAGE-4-E (Interreg V-A Portugal-Spain - POCTEP).


  1. 1.
    Gomez, J., Mavridis, N., Garrido, S.: Social path planning: generic human-robot interaction framework for robotic navigation tasks. In: Workshop on Cognitive Robotics Systems: Replicating Human Actions and Activities at IEEE/RSJ International Conference on Robots and Systems (2013)Google Scholar
  2. 2.
    Lichtenthaler, C., Peters, A., Griffiths, S., Kirsch, A.: Social navigation - identifying robot navigation patterns in a path crossing scenario. In: Lecture Notes in Computer Science, vol. 8239, pp. 84–93 (2013)Google Scholar
  3. 3.
    Charalampous, K., Kostavelis, I., Gasteratos, A.: Robot navigation in large-scale social maps: an action recognition approach. Expert Syst. Appl. 66, 261–273 (2016)CrossRefGoogle Scholar
  4. 4.
    Vega, A., Manso, L., Bustos, P., Núñez, P., Macharet, D.: Socially aware robot navigation system in human-populated and interactive environments based on an adaptive spatial density function and space affordances. Pattern Recogn. Lett. 1, 72–84 (2019)CrossRefGoogle Scholar
  5. 5.
    Foux, G., Heymann, M., Bruckstein, A.: Two-dimensional robot navigation among unknown stationary polygonal obstacles. IEEE Trans. Robot. Autom. 9, 96–102 (1993)CrossRefGoogle Scholar
  6. 6.
    Weihua, C., Tie, Z., Yanbiao, Z.: Mobile robot path planning based on social interaction space in social environment. Int. J. Adv. Rob. Syst. 1, 1–10 (2018)Google Scholar
  7. 7.
    Kruse, T., Pandey, A., Alami, R., Kirsch, A.: Human-aware robot navigation: a survey. Robot. Auton. Syst. 61(12), 1726–1743 (2013)CrossRefGoogle Scholar
  8. 8.
    Rios-Martinez, J., Spalanzani, A., Laugier, C.: From proxemics theory to socially-aware navigation: a survey. Int. J. Soc. Robot. 7(2), 137–153 (2015)CrossRefGoogle Scholar
  9. 9.
    Rios-Martinez, J.: Socially-aware robot navigation: combining risk assessment and social conventions. Ph.d. Inria, France (2013)Google Scholar
  10. 10.
    Althaus, P., Ishiguro, H., Kanda, T., Miyashita, T., Christensen, H.I.: Navigation for human robot interaction tasks. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 1894–1989 (2004)Google Scholar
  11. 11.
    Kirby, R., Simmons, R., Forlizzi, J.: COMPANION: a constraint-optimizing method for person-acceptable navigation. In: IEEE International Symposium on Robot and Human Interactive Communication, pp. 607–612 (2009)Google Scholar
  12. 12.
    Tranberg Hansen, S., Svenstrup, M., Andersen, H.J., Bak, T.: Adaptive human aware navigation based on motion pattern analysis. In: IEEE International Symposium on Robot and Human Interactive Communication, pp. 927–932 (2009)Google Scholar
  13. 13.
    Photchara, R., Mae, Y., Ohara, K., Kojima, M., Arai, T.: Social navigation model based on human intention analysis using face orientation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. vol. 1, pp. 1682–1688 (2010)Google Scholar
  14. 14.
    LaValle, S.: Planning Algorithms. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  15. 15.
    Lam, C., Chou, C., Chiang, K., Fu, C.: Human-centered robot navigation - towards a harmoniously human-robot coexisting environment. IEEE Trans. Rob. 27(1), 99–112 (2011)CrossRefGoogle Scholar
  16. 16.
    Bustos, P., Manso, L., Bandera, A., Bandera, J.P., García-Varea, I., Martínez-Gómez, J.: The CORTEX cognitive robotics architecture: use cases. Cogn. Syst. Res. 55, 107–123 (2019)CrossRefGoogle Scholar
  17. 17.
    Okal, B., Arras, K.: Learning socially normative robot navigation behaviors with Bayesian inverse reinforcement learning. In: IEEE International Conference on Robotics and Automation, pp. 2889 – 2895 (2016)Google Scholar
  18. 18.
    Kostavelis, I.: Robot behavioral mapping: a representation that consolidates the human-robot coexistence. Robot. Autom. Eng. 1, 1–3 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Araceli Vega
    • 1
  • Ramón Cintas
    • 1
  • Luis J. Manso
    • 2
  • Pablo Bustos
    • 1
  • Pedro Núñez
    • 1
    Email author
  1. 1.RoboLab, University of ExtremaduraBadajozSpain
  2. 2.School of Engineering and Applied ScienceUniversity of AstonBirminghamUK

Personalised recommendations