Skip to main content

Using a Collaborative Robot to the Upper Limb Rehabilitation

  • Conference paper
  • First Online:
Robot 2019: Fourth Iberian Robotics Conference (ROBOT 2019)

Abstract

Rehabilitation is a relevant process for the recovery from dysfunctions and improves the realization of patient’s Activities of Daily Living (ADLs). Robotic systems are considered an important field within the development of physical rehabilitation, thus allowing the collection of several data, besides performing exercises with intensity and repeatedly. This paper addresses the use of a collaborative robot applied in the rehabilitation field to help the physiotherapy of upper limb of patients, specifically shoulder. To perform the movements with any patient the system must learn to behave to each of them. In this sense, the Reinforcement Learning (RL) algorithm makes the system robust and independent of the path of motion. To test this approach, it is proposed a simulation with a UR3 robot implemented in V-REP platform. The main control variable is the resistance force that the robot is able to do against the movement performed by the human arm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rehabilitation 2030: A call for action plan: Then need to scale up rehabilitation (2017)

    Google Scholar 

  2. Chatterji, S., Byles, J., Cutler, D., Seeman, T., Verdes, E.: Health, Functioning, and disability in older adults - presents status and future implications. Lancet 385(9967), 563–575 (2015)

    Article  Google Scholar 

  3. Union Européenne des Médicins Spécialistes (UEMS) e Académie Européenne de Médicine e Réadaptation: Livro Branco de Medicina Física e de Reabilitação na Europa. Sociedade Portuguesa de Medicina Fisica e de Reabilitação, Coimbra (2009)

    Google Scholar 

  4. Turolla, A.: An overall framework for neurorehabilitation robotics: implications for recovery. In: Rehabilitation Robotics, pp. 15–27. Elsevier (2018)

    Google Scholar 

  5. Djikers, M., deBear, P., et al.: Patient and staff acceptance of robotic technology in occupationl therapy: a pilot study. J. Rehabil. Res. Dev. 28(2), 33–44 (1991)

    Article  Google Scholar 

  6. Novak, D., Riener, R.: Control strategies and artificial intelligence in rehabilitation robotics. AI Mag. 36(4), 23–33 (2015)

    Article  Google Scholar 

  7. Yap, R., Kono, D., et al.: Development of wereable gait assist robot using interactive motor rhythmic stimulation to upper and lower limbs. AI Mag. 36(4), 23–33 (2015)

    Article  Google Scholar 

  8. Casadio, M., Sanguineti, V., et al.: Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation. Technol. Health Care (14), 123–142 (2006)

    Article  Google Scholar 

  9. Amirabdollahian, F., Taylor, M., et al.: The Gentle/S project: a new method of delivering neuro-rehabilitation. Assistive Technology - Added Value to the Quality of Life (10), 36–41 (2001)

    Google Scholar 

  10. Kemna, S., Culmer, P., et al.: Developing a user interface for the iPAM stroke rehabilitation system. In: IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan (2009)

    Google Scholar 

  11. Hogan, N., Krebs, H.I., Charnnarong, J., Srikrishna, P., Sharon, A.: Mit-manus: a workstation for manual therapy and training. I. In: Proceedings IEEE International Workshop on Robot and Human Communication, pp. 161–165. IEEE (1992)

    Google Scholar 

  12. Reharob: Reharob (2000). http://reharob.manuf.bme.hu. Accessed 06 May 2019

  13. Loureiro, R., Harwin, W., et al.: Advances in upper limb stroke rehabilitation. Med. Biol. Eng. Comput. 49(1), 1103–1118 (2011)

    Article  Google Scholar 

  14. Coppelia Robotics. http://www.coppeliarobotics.com. Accessed 17 June 2019

  15. Coppelia Robotics Homepage: Max. joint torques - 17260. https://www.universal-robots.com/how-tos-and-faqs/faq/ur-faq/max-joint-torques-17260/. Accessed 02 Sept 2019

  16. Ribeiro, D.C., Estivalet, M.G., Loss, J.F.: Modelo para estimativa da força e torque muscular durante a abdução do ombro. revista portuguesa de ciências do desporto 8(3), 321–329 (2008)

    Article  Google Scholar 

  17. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction, 2nd edn. A Bradford Book, London (2015)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas de Azevedo Fernandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Azevedo Fernandes, L., Lima, J.L., Leitão, P., Nakano, A.Y. (2020). Using a Collaborative Robot to the Upper Limb Rehabilitation. In: Silva, M., Luís Lima, J., Reis, L., Sanfeliu, A., Tardioli, D. (eds) Robot 2019: Fourth Iberian Robotics Conference. ROBOT 2019. Advances in Intelligent Systems and Computing, vol 1093. Springer, Cham. https://doi.org/10.1007/978-3-030-36150-1_35

Download citation

Publish with us

Policies and ethics