Skip to main content

Cloud-Based Integrated Process Planning and Scheduling Optimisation via Asynchronous Islands

  • Conference paper
  • First Online:
Economics of Grids, Clouds, Systems, and Services (GECON 2019)

Abstract

In this paper, we present Optimisation as a Service (OaaS) for an integrated process planning and scheduling in smart factories based on a distributed multi-criteria genetic algorithm (GA). In contrast to the traditional distributed GA following the island model, the proposed islands are executed asynchronously and exchange solutions at time points depending solely on the optimisation progress at each island. Several solutions’ exchange strategies are proposed, implemented in Amazon Elastic Container Service for Kubernetes (Amazon EKS) and evaluated using a real-world manufacturing problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We do not enforce the choice of quality indicator applied in the algorithm, but assume that a higher quality value indicates a higher quality of the optimisation result.

  2. 2.

    1 ECU is defined as the compute power of a 1.0–1.2 GHz server CPU from 2007.

  3. 3.

    The current costs can be found at https://aws.amazon.com/eks/pricing/.

References

  1. Dziurzanski, P., Zhao, S., Swan, J., Indrusiak, L.S., Scholze, S., Krone, K.: Solving the multi-objective flexible job-shop scheduling problem with alternative recipes for a chemical production process. In: Kaufmann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 33–48. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16692-2_3

    Chapter  Google Scholar 

  2. Méndez, C.A., et al.: State-of-the-art review of optimization methods for short-term scheduling of batch processes. Comput. Chem. Eng. 30(6–7), 913–946 (2006)

    Article  Google Scholar 

  3. Lemaignan, S., Siadat, A., Dantan, J., Semenenko, A.: MASON: a proposal for an ontology of manufacturing domain. In: IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS 2006), pp. 195–200, June 2006

    Google Scholar 

  4. Dziurzanski, P., Swan, J., Indrusiak, L.S., Ramos, J.: Implementing digital twins of smart factories with interval algebra. In: 2019 IEEE International Conference on Industrial Technology, ICIT 2019 (2019)

    Google Scholar 

  5. Di Martino, S., Ferrucci, F., Maggio, V., Sarro, F.: Towards migrating genetic algorithms for test data generation to the cloud (2012)

    Google Scholar 

  6. Zhao, S., Dziurzanski, P., Przewozniczek, M., Komarnicki, M., Indrusiak, L.S.: Cloud-based dynamic distributed optimisation of integrated process planning and scheduling in smart factories. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO 2019. ACM, New York (2019)

    Google Scholar 

  7. Thierens, D.: Scalability problems of simple genetic algorithms. Evol. Comput. 7(4), 331–352 (1999). https://doi.org/10.1162/evco.1999.7.4.331

    Article  Google Scholar 

  8. Leclerc, G., Auerbach, J.E., Iacca, G., Floreano, D.: The seamless peer and cloud evolution framework. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, pp. 821–828. ACM (2016)

    Google Scholar 

  9. Ma, N., Liu, X.F., Zhan, Z.H., Zhong, J.H., Zhang, J.: Load balance aware distributed differential evolution for computationally expensive optimization problems. In: 2017 GECCO Proceedings Companion, pp. 209–210. ACM (2017)

    Google Scholar 

  10. Melab, N., Mezmaz, M., Talbi, E.: Parallel hybrid multi-objective island model in peer-to-peer environment. In: 19th IEEE International Parallel and Distributed Processing Symposium. pp. 9–pp, April 2005

    Google Scholar 

  11. Enterprise Application Container Platform. https://www.docker.com/. Accessed 19 Apr 2019

  12. Salza, P., Ferrucci, F., Sarro, F.: Develop, deploy and execute parallel genetic algorithms in the cloud. In: 2016 GECCO Proceedings Companion, pp. 121–122. ACM (2016)

    Google Scholar 

  13. Kubernetes: Production-Grade Container Orchestration. https://kubernetes.io/. Accessed 19 Apr 2019

  14. García-Valdez, J.M., Merelo-Guervós, J.J.: A modern, event-based architecture for distributed evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2018, pp. 233–234. ACM, New York (2018)

    Google Scholar 

  15. Nogueras, R., Cotta, C.: An analysis of migration strategies in island-based multimemetic algorithms. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 731–740. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_72

    Chapter  Google Scholar 

  16. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_8

    Chapter  Google Scholar 

  17. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_83

    Chapter  Google Scholar 

  18. Li, M., Yang, S., Liu, X.: Diversity comparison of pareto front approximations in many-objective optimization. IEEE Trans. Cybern. 44(12), 2568–2584 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the EU H2020 SAFIRE project (Ref. 723634).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, S., Mei, H., Dziurzanski, P., Przewozniczek, M., Indrusiak, L.S. (2019). Cloud-Based Integrated Process Planning and Scheduling Optimisation via Asynchronous Islands. In: Djemame, K., Altmann, J., Bañares, J., Agmon Ben-Yehuda, O., Naldi, M. (eds) Economics of Grids, Clouds, Systems, and Services. GECON 2019. Lecture Notes in Computer Science(), vol 11819. Springer, Cham. https://doi.org/10.1007/978-3-030-36027-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36027-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36026-9

  • Online ISBN: 978-3-030-36027-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics