Abstract
In this paper, we present Optimisation as a Service (OaaS) for an integrated process planning and scheduling in smart factories based on a distributed multi-criteria genetic algorithm (GA). In contrast to the traditional distributed GA following the island model, the proposed islands are executed asynchronously and exchange solutions at time points depending solely on the optimisation progress at each island. Several solutions’ exchange strategies are proposed, implemented in Amazon Elastic Container Service for Kubernetes (Amazon EKS) and evaluated using a real-world manufacturing problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We do not enforce the choice of quality indicator applied in the algorithm, but assume that a higher quality value indicates a higher quality of the optimisation result.
- 2.
1 ECU is defined as the compute power of a 1.0–1.2 GHz server CPU from 2007.
- 3.
The current costs can be found at https://aws.amazon.com/eks/pricing/.
References
Dziurzanski, P., Zhao, S., Swan, J., Indrusiak, L.S., Scholze, S., Krone, K.: Solving the multi-objective flexible job-shop scheduling problem with alternative recipes for a chemical production process. In: Kaufmann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 33–48. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16692-2_3
Méndez, C.A., et al.: State-of-the-art review of optimization methods for short-term scheduling of batch processes. Comput. Chem. Eng. 30(6–7), 913–946 (2006)
Lemaignan, S., Siadat, A., Dantan, J., Semenenko, A.: MASON: a proposal for an ontology of manufacturing domain. In: IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS 2006), pp. 195–200, June 2006
Dziurzanski, P., Swan, J., Indrusiak, L.S., Ramos, J.: Implementing digital twins of smart factories with interval algebra. In: 2019 IEEE International Conference on Industrial Technology, ICIT 2019 (2019)
Di Martino, S., Ferrucci, F., Maggio, V., Sarro, F.: Towards migrating genetic algorithms for test data generation to the cloud (2012)
Zhao, S., Dziurzanski, P., Przewozniczek, M., Komarnicki, M., Indrusiak, L.S.: Cloud-based dynamic distributed optimisation of integrated process planning and scheduling in smart factories. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO 2019. ACM, New York (2019)
Thierens, D.: Scalability problems of simple genetic algorithms. Evol. Comput. 7(4), 331–352 (1999). https://doi.org/10.1162/evco.1999.7.4.331
Leclerc, G., Auerbach, J.E., Iacca, G., Floreano, D.: The seamless peer and cloud evolution framework. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, pp. 821–828. ACM (2016)
Ma, N., Liu, X.F., Zhan, Z.H., Zhong, J.H., Zhang, J.: Load balance aware distributed differential evolution for computationally expensive optimization problems. In: 2017 GECCO Proceedings Companion, pp. 209–210. ACM (2017)
Melab, N., Mezmaz, M., Talbi, E.: Parallel hybrid multi-objective island model in peer-to-peer environment. In: 19th IEEE International Parallel and Distributed Processing Symposium. pp. 9–pp, April 2005
Enterprise Application Container Platform. https://www.docker.com/. Accessed 19 Apr 2019
Salza, P., Ferrucci, F., Sarro, F.: Develop, deploy and execute parallel genetic algorithms in the cloud. In: 2016 GECCO Proceedings Companion, pp. 121–122. ACM (2016)
Kubernetes: Production-Grade Container Orchestration. https://kubernetes.io/. Accessed 19 Apr 2019
García-Valdez, J.M., Merelo-Guervós, J.J.: A modern, event-based architecture for distributed evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2018, pp. 233–234. ACM, New York (2018)
Nogueras, R., Cotta, C.: An analysis of migration strategies in island-based multimemetic algorithms. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 731–740. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_72
Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_8
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_83
Li, M., Yang, S., Liu, X.: Diversity comparison of pareto front approximations in many-objective optimization. IEEE Trans. Cybern. 44(12), 2568–2584 (2014)
Acknowledgements
The authors acknowledge the support of the EU H2020 SAFIRE project (Ref. 723634).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhao, S., Mei, H., Dziurzanski, P., Przewozniczek, M., Indrusiak, L.S. (2019). Cloud-Based Integrated Process Planning and Scheduling Optimisation via Asynchronous Islands. In: Djemame, K., Altmann, J., Bañares, J., Agmon Ben-Yehuda, O., Naldi, M. (eds) Economics of Grids, Clouds, Systems, and Services. GECON 2019. Lecture Notes in Computer Science(), vol 11819. Springer, Cham. https://doi.org/10.1007/978-3-030-36027-6_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-36027-6_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36026-9
Online ISBN: 978-3-030-36027-6
eBook Packages: Computer ScienceComputer Science (R0)