Skip to main content

On Poincaré and Logarithmic Sobolev Inequalities for a Class of Singular Gibbs Measures

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2256))

Abstract

This note, mostly expository, is devoted to Poincaré and log-Sobolev inequalities for a class of Boltzmann–Gibbs measures with singular interaction. Such measures allow to model one-dimensional particles with confinement and singular pair interaction. The functional inequalities come from convexity. We prove and characterize optimality in the case of quadratic confinement via a factorization of the measure. This optimality phenomenon holds for all beta Hermite ensembles including the Gaussian unitary ensemble, a famous exactly solvable model of random matrix theory. We further explore exact solvability by reviewing the relation to Dyson–Ornstein–Uhlenbeck diffusion dynamics admitting the Hermite–Lassalle orthogonal polynomials as a complete set of eigenfunctions. We also discuss the consequence of the log-Sobolev inequality in terms of concentration of measure for Lipschitz functions such as maxima and linear statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.W. Anderson, A. Guionnet, O. Zeitouni, An introduction to random matrices, in Cambridge Studies in Advanced Mathematics, vol 118 (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  2. C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto, G. Scheffer, Sur les inégalités de Sobolev logarithmiques, in Panoramas et Synthèses, vol 10 (Society Mathematics France, Paris, 2000)

    MATH  Google Scholar 

  3. A. Arnold, P. Markowich, G. Toscani, A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm. Partial Differ. Equ. 26(1–2), 43–100 (2001)

    Article  MathSciNet  Google Scholar 

  4. G. Aubrun, A sharp small deviation inequality for the largest eigenvalue of a random matrix, in Séminaire de Probabilités XXXVIII. Lecture Notes in Mathematics, vol 1857, pp. 320–337 (Springer, Berlin, 2005)

    Google Scholar 

  5. T.H. Baker, P.J. Forrester, The Calogero-Sutherland model and generalized classical polynomials. Comm. Math. Phys. 188(1), 175–216 (1997)

    Article  MathSciNet  Google Scholar 

  6. D. Bakry, M. Émery, Diffusions hypercontractives, in Séminaire de probabilités, XIX, 1983/84. Lecture Notes in Mathematics, vol 1123, pp. 177–206 (Springer, Berlin, 1985)

    Google Scholar 

  7. D. Bakry, I. Gentil, M. Ledoux, in Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften, vol 348 (Springer, Cham, 2014)

    Google Scholar 

  8. K. Ball, An elementary introduction to modern convex geometry. in Flavors of Geometry. Mathematical Sciences Research Institute Publications, vol 31, pp. 1–58 (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  9. W. Beckner, A generalized Poincaré inequality for Gaussian measures. Proc. Am. Math. Soc. 105(2), 397–400 (1989)

    MATH  Google Scholar 

  10. G. Ben Arous, A. Guionnet, Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Probab. Theory Relat. Fields 108(4), 517–542 (1997)

    Article  MathSciNet  Google Scholar 

  11. R. Bhatia, in Matrix Analysis. Graduate Texts in Mathematics, vol 169 (Springer, New York, 1997)

    Google Scholar 

  12. S.G. Bobkov, M. Ledoux, From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal. 10(5), 1028–1052 (2000)

    Article  MathSciNet  Google Scholar 

  13. H.J. Brascamp, E.H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22(4), 366–389 (1976)

    Article  Google Scholar 

  14. M.-F. Bru, Wishart processes. J. Theor. Probab. 4(4), 725–751 (1991)

    Article  MathSciNet  Google Scholar 

  15. L.A. Caffarelli, Monotonicity properties of optimal transportation and the FKG and related inequalities. Comm. Math. Phys. 214(3), 547–563 (2000)

    Article  MathSciNet  Google Scholar 

  16. L.A. Caffarelli, Erratum: “Monotonicity of optimal transportation and the FKG and related inequalities” [Comm. Math. Phys. 214 (2000), no. 3, 547–563; MR1800860 (2002c:60029)]. Comm. Math. Phys. 225(2), 449–450 (2002)

    Google Scholar 

  17. F. Calogero, Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419–436 (1971)

    Article  MathSciNet  Google Scholar 

  18. E.A. Carlen, Superadditivity of Fisher’s information and logarithmic Sobolev inequalities. J. Funct. Anal. 101(1), 194–211 (1991)

    Article  MathSciNet  Google Scholar 

  19. E. Cépa, Équations différentielles stochastiques multivoques, in Séminaire de Probabilités, XXIX. Lecture Notes in Mathematics, vol 1613, pp. 86–107 (Springer, Berlin, 1995)

    Google Scholar 

  20. E. Cépa, D. Lépingle, Diffusing particles with electrostatic repulsion. Probab. Theory Relat. Fields 107(4), 429–449 (1997)

    Article  MathSciNet  Google Scholar 

  21. D. Chafaï, Glauber versus Kawasaki for spectral gap and logarithmic Sobolev inequalities of some unbounded conservative spin systems. Markov Process. Related Fields 9(3), 341–362 (2003)

    MathSciNet  MATH  Google Scholar 

  22. D. Chafaï, Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities. J. Math. Kyoto Univ. 44(2), 325–363 (2004)

    Article  MathSciNet  Google Scholar 

  23. D. Chafaï, http://djalil.chafai.net/blog/2016/12/27/mind-the-gap/. blogpost (2016)

  24. D. Chafaï, N. Gozlan, P.-A. Zitt, First-order global asymptotics for confined particles with singular pair repulsion. Ann. Appl. Probab. 24(6), 2371–2413 (2014)

    Article  MathSciNet  Google Scholar 

  25. D. Chafaï, F. Bolley, J. Fontbona, Dynamics of a Planar Coulomb Gas (2017). Preprint arXiv:1706.08776 to appear in Ann. Appl. Probab.

  26. D. Chafaï, G. Ferré, G. Stoltz, Coulomb Gases Under Constraint: Some Theoretical and Numerical Results (2019). Preprint

    Google Scholar 

  27. X. Cheng, D. Zhou, Eigenvalues of the drifted Laplacian on complete metric measure spaces. Commun. Contemp. Math. 19(1), 1650001, 17 (2017)

    Google Scholar 

  28. L. Chris, G. Rogers, Z, Shi, Interacting Brownian particles and the Wigner law. Probab. Theory Relat. Fields 95(4), 555–570 (1993)

    Article  Google Scholar 

  29. T.A. Courtade, M. Fathi, Stability of the Bakry-Émery theorem on \(\mathbb {R}^n\) (2018). Preprint arXiv:1807.09845

  30. G. De Philippis, A. Figalli, Rigidity and stability of Caffarelli’s log-concave perturbation theorem. Nonlinear Anal. 154, 59–70 (2017)

    Article  MathSciNet  Google Scholar 

  31. N. Demni, Radial Dunkl Processes: Existence and uniqueness, Hitting time, Beta Processes and Random Matrices (2007). Preprint arxiv:0707.0367v1

  32. N. Demni, First hitting time of the boundary of the Weyl chamber by radial Dunkl processes. SIGMA Symmetry Integrability Geom. Methods Appl. 4, Paper 074, 14 (2008)

    Google Scholar 

  33. Y. Doumerc, Matrices aléatoires, Processus Stochastiques et Groupes de réflexions. Ph.D. thesis, Université de Toulouse, Toulouse, 2005

    Google Scholar 

  34. I. Dumitriu, A. Edelman, Matrix models for beta ensembles. J. Math. Phys. 43(11), 5830–5847 (2002)

    Article  MathSciNet  Google Scholar 

  35. I. Dumitriu, A. Edelman, G. Shuman, MOPS: multivariate orthogonal polynomials (symbolically). J. Symbolic Comput. 42(6), 587–620 (2007)

    Article  MathSciNet  Google Scholar 

  36. F.J. Dyson, A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962)

    Article  MathSciNet  Google Scholar 

  37. F.J. Dyson, The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys. 3, 1199–1215 (1962)

    MATH  Google Scholar 

  38. L. Erdös, H.-T. Yau, A Dynamical Approach to Random Matrix Theory. Courant Lecture Notes in Mathematics, vol 28 (Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence, 2017)

    Google Scholar 

  39. L.C. Evans, in Partial Differential Equations, Graduate Studies in Mathematics, vol 19, 2nd edn. (American Mathematical Society, Providence, 2010)

    Google Scholar 

  40. P.J. Forrester, Log-gases and random matrices, in London Mathematical Society Monographs Series, vol 34 (Princeton University Press, Princeton, 2010)

    Google Scholar 

  41. N. Gozlan, private communication (2012)

    Google Scholar 

  42. D.J. Grabiner, Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. H. Poincaré Probab. Statist. 35(2), 177–204 (1999)

    Article  MathSciNet  Google Scholar 

  43. P. Graczyk, J. Mał ecki, E. Mayerhofer, A characterization of Wishart processes and Wishart distributions. Stoch. Process. Appl. 128(4), 1386–1404 (2018)

    Google Scholar 

  44. A. Guionnet, in Large Random Matrices: Lectures on Macroscopic Asymptotics. Lecture Notes in Mathematics, vol 1957 (Springer, Berlin, 2009). Lectures from the 36th Probability Summer School held in Saint-Flour, 2006

    Google Scholar 

  45. A. Guionnet, O. Zeitouni, Concentration of the spectral measure for large matrices. Electron. Commun. Probab. 5, 119–136 (2000)

    Article  MathSciNet  Google Scholar 

  46. J. Gustavsson, Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. H. Poincaré Probab. Stat. 41(2), 151–178 (2005)

    Article  MathSciNet  Google Scholar 

  47. A.J. Hoffman, H.W. Wielandt, The variation of the spectrum of a normal matrix. Duke Math. J. 20, 37–39 (1953)

    Article  MathSciNet  Google Scholar 

  48. D. Holcomb, E. Paquette, Tridiagonal Models for Dyson Brownian Motion (2017). preprint arXiv:1707.02700

  49. R.A. Horn, C.R. Johnson, Matrix Analysis, 2nd edition (Cambridge University Press, Cambridge, 2013)

    MATH  Google Scholar 

  50. W. König, N. O’Connell, Eigenvalues of the Laguerre process as non-colliding squared Bessel processes. Electron. Comm. Probab. 6, 107–114 (2001)

    Article  MathSciNet  Google Scholar 

  51. M. Lassalle, Polynômes de Hermite généralisés. C. R. Acad. Sci. Paris Sér. I Math. 313(9), 579–582 (1991)

    MathSciNet  MATH  Google Scholar 

  52. M. Lassalle, Polynômes de Jacobi généralisés. C. R. Acad. Sci. Paris Sér. I Math. 312(6), 425–428 (1991)

    MathSciNet  MATH  Google Scholar 

  53. M. Lassalle, Polynômes de Laguerre généralisés. C. R. Acad. Sci. Paris Sér. I Math. 312(10), 725–728 (1991)

    MathSciNet  MATH  Google Scholar 

  54. M. Ledoux, On an integral criterion for hypercontractivity of diffusion semigroups and extremal functions. J. Funct. Anal. 105(2), 444–465 (1992)

    Article  MathSciNet  Google Scholar 

  55. M. Ledoux, in The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, vol 89 (American Mathematical Society, Providence, 2001)

    Google Scholar 

  56. M. Ledoux, A remark on hypercontractivity and tail inequalities for the largest eigenvalues of random matrices, in Séminaire de Probabilités XXXVII. Lecture Notes in Mathematics, vol 1832, pp. 360–369 (Springer, Berlin, 2003)

    Google Scholar 

  57. M. Ledoux, B. Rider, Small deviations for beta ensembles. Electron. J. Probab. 15(41), 1319–1343 (2010)

    Article  MathSciNet  Google Scholar 

  58. F. Malrieu, Logarithmic Sobolev inequalities for some nonlinear PDE’s. Stoch. Process. Appl. 95(1), 109–132 (2001)

    Article  MathSciNet  Google Scholar 

  59. O. Mazet, Classification des semi-groupes de diffusion sur R associés à une famille de polynômes orthogonaux, in Séminaire de Probabilités, XXXI. Lecture Notes in Mathematics, vol 1655, pp. 40–53 (Springer, Berlin, 1997)

    Google Scholar 

  60. E.S. Meckes, M.W. Meckes, Concentration and convergence rates for spectral measures of random matrices. Probab. Theory Relat. Fields 156(1-2), 145–164 (2013)

    Article  MathSciNet  Google Scholar 

  61. E.S. Meckes, M.W. Meckes, Spectral measures of powers of random matrices. Electron. Commun. Probab. 18(78), 13 (2013)

    Google Scholar 

  62. M.L. Mehta, in Random Matrices. Pure and Applied Mathematics (Amsterdam), vol 142 (Elsevier/Academic, Amsterdam, 2004)

    Google Scholar 

  63. J.A. Ramírez, B. Rider, B. Virág, Beta ensembles, stochastic Airy spectrum, and a diffusion. J. Am. Math. Soc. 24(4), 919–944, 2011

    Article  MathSciNet  Google Scholar 

  64. M. Rösler, M. Voit, Markov processes related with Dunkl operators. Adv. Appl. Math. 21(4), 575–643 (1998)

    Article  MathSciNet  Google Scholar 

  65. H. Tanaka, Stochastic differential equations with reflecting boundary condition in convex regions. Hiroshima Math. J. 9(1), 163–177 (1979)

    Article  MathSciNet  Google Scholar 

  66. J.F. van Diejen, L. Vinet eds. Calogero-Moser-Sutherland models. CRM Series in Mathematical Physics. (Springer, New York, 2000)

    Google Scholar 

  67. M. Voit, J.H.C. Woerner, Functional Central Limit Theorems for Multivariate Bessel Processes in the Freezing Regime (2019). preprint arXiv:1901.08390

Download references

Acknowledgements

This work is linked with the French research project ANR-17-CE40-0030 - EFI - Entropy, flows, inequalities. A significant part was carried out during a stay at the Institute for Computational and Experimental Research in Mathematics (ICERM), during the 2018 Semester Program on “Point Configurations in Geometry, Physics and Computer Science”, thanks to the kind invitation by Edward Saff and Sylvia Serfaty. We thank also Sergio Andraus, François Bolley, Nizar Demni, Peter Forrester, Nathaël Gozlan, Michel Ledoux, Mylène Maïda, and Elizabeth Meckes for useful discussions and some help to locate references. We would also like to thank the anonymous referee for his careful reading of the manuscript and his suggestion to use [27, 29, 30] to prove Lemma 10.3.1 and Theorem 10.1.3. This note takes its roots in the blog post [23].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Lehec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chafaï, D., Lehec, J. (2020). On Poincaré and Logarithmic Sobolev Inequalities for a Class of Singular Gibbs Measures. In: Klartag, B., Milman, E. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2256. Springer, Cham. https://doi.org/10.1007/978-3-030-36020-7_10

Download citation

Publish with us

Policies and ethics