Skip to main content

The Vital Foliar Diseases of Cicer arietinum L. (Chickpea): Science, Epidemiology, and Management

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Chickpea (Cicer arietinum L.) is a significant and high-value pulse crop worldwide, ranking third after beans and pea. It is a yearly legume adopted in 45 countries over 5 continents and grown over a territory of 10.4 million hectares with the production of 8.57 million tons. Chickpea is known by various names, such as Bengal gram, gram, and chana, in India, being the largest chickpea producer accounting for 64% of the worldwide production. Chickpea has a quantitative source of carbohydrates, proteins, minerals, vitamins, fibers, and phytochemicals. Comparatively the nutritional quality of protein existing in chickpea is better than other pulses. Chickpea also fixes nitrogen from the atmosphere and reduces the need for nitrogenous fertilizers. Optimal conditions like 18–26 °C (during the night) and 21–29 °C (during the day) and rainfall of 560–660 mm/year are required for the optimal growth and development of chickpea. The crops are affected by serious foliar disease, which affects the development stages. Pathogens like fungi, viruses, bacteria, nematodes, and mycoplasma affect chickpea production. Among all this, fungi are the most disease causing group that affect the growth and development of roots, stems, leaves, flowers, and pods of chickpea. Diseases of chickpea like Botrytis gray mold, Ascochyta blight disease, rust, and Sclerotinia blight are caused by fungi Botrytis cinerea, Ascochyta rabiei, Uromyces ciceris-arietini, and Sclerotinia sclerotiorum, respectively. Among these, most prominent are the Ascochyta blight and Botrytis gray mold. The foliar disease has restricted chickpea production in many countries, so integrated management or efficient control strategies are to be taken to prevent loss of crop and pulses. This chapter includes the ecology of the chickpea to its environment based on distribution and climate analysis. New and suitable understanding of the science, economic importance, distribution, symptoms, epidemiology, and integrated management and control measures of the major foliar fungal disease of chickpea is studied in this chapter. Investigation of the pathogen’s genetic basis of host-pathogen interaction and identification of the host-plant resistance will help in improving or breeding a resistant variety of chickpea and will be useful to farmers and researchers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbo S, Berger J, Turner NC. Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct Plant Biol. 2003a;30(10):1081–7.

    Article  PubMed  Google Scholar 

  • Abbo S, Shtienberg D, Lichtenzveig J, Lev-Yadun S, Gopher A. The chickpea, summer cropping, and a new model for pulse domestication in the ancient near east. Q Rev Biol. 2003b;78(4):435–48.

    Article  PubMed  Google Scholar 

  • Agbola FW, Kelley TG, Bent MJ, Rao PP. Eliciting and valuing market preferences with traditional food crops: the case of chickpea in India. Int Food Agribus Manag Rev. 2002;5(1):7–21.

    Article  Google Scholar 

  • Ahmed AM, Tana T, Singh P, Molla A. Modeling climate change impact on chickpea production and adaptation options in the semi-arid North-Eastern Ethiopia. J Agric Environ Int Dev. 2016;110(2):377–95.

    Google Scholar 

  • Akinjayeju O, Ajayi OF. Effects of dehulling on functional and sensory properties of flours from black beans (Phaseolus vulgaris). Food Nutr Sci. 2011;2(04):344.

    CAS  Google Scholar 

  • Arranz M, Eslava A, Benito E. Pathogenicity factors in Botrytis cinerea. Rev Iberoam Micol. 2000;17(1):S43–6.

    CAS  PubMed  Google Scholar 

  • Berger J, Ali M, Basu P, Chaudhary B, Chaturvedi S, Deshmukh P, Dharmaraj P, Dwivedi S, Gangadhar G, Gaur P. Genotype by environment studies demonstrate the critical role of phenology in adaptation of chickpea (Cicer arietinum L.) to high and low yielding environments of India. Field Crop Res. 2006;98(2–3):230–44.

    Article  Google Scholar 

  • Bhaskar PB, Venkateshwaran M, Wu L, Ané J-M, Jiang J. Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato. PLoS One. 2009;4(6):e5812.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhat MA, Romshoo SA, Beig G. Aerosol black carbon at an urban site-Srinagar, north-western Himalaya, India: seasonality, sources, meteorology and radiative forcing. Atmos Environ. 2017;165:336–48.

    Article  CAS  Google Scholar 

  • Bidinger F, Yadav O, Rattunde EW. Genetic improvement of pearl millet for the arid zone of north-western India: lessons from two decades of collaborative ICRISAT-ICAR research. Exp Agric. 2009;45(1):107–15.

    Article  Google Scholar 

  • Brenes A, Viveros A, Centeno C, Arija I, Marzo F. Nutritional value of raw and extruded chickpeas (Cicer arietinum L.) for growing chickens. Span J Agric Res. 2008;6(4):537–45.

    Article  Google Scholar 

  • Bretag T, MacLeod W, Kimber R, Moore K, Knights E, Davidson J. Management of Ascochyta blight in chickpeas in Australia. Australas Plant Pathol. 2008;37(5):486–97.

    Article  CAS  Google Scholar 

  • Cannon PF, Kirk PM. Fungal families of the world. Wallingford/Cambridge, MA: CABI; 2007.

    Book  Google Scholar 

  • Colledge S, Conolly J, Shennan S, Bellwood P, Bouby L, Hansen J, Harris D, Kotsakis K, zdoan M, Peltenburg E. Archaeobotanical evidence for the spread of farming in the eastern Mediterranean. Curr Anthropol. 2004;45(S4):S35–58.

    Article  Google Scholar 

  • Daehler CC, Denslow JS, Ansari S, KUO HC. A risk-assessment system for screening out invasive pest plants from Hawaii and other Pacific islands. Conserv Biol. 2004;18(2):360–8.

    Article  Google Scholar 

  • Diamond J. Location, location, location: the first farmers. Science. 1997;278(5341):1243–4.

    Article  CAS  Google Scholar 

  • El-Amier YA, El-Halawany E, Haroun SA, Mohamud SG. Vegetation analysis and soil characteristics on two species of genus Achillea growing in Egyptian Desert. Open J Ecol. 2015;5(09):420–33.

    Article  Google Scholar 

  • Fuller DQ, Harvey EL. The archaeobotany of Indian pulses: identification, processing and evidence for cultivation. Environ Archaeol. 2006;11(2):219–46.

    Article  Google Scholar 

  • Galloway J, MacLeod W. Didymella rabiei, the teleomorph of Ascochyta rabiei, found on chickpea stubble in Western Australia. Australas Plant Pathol. 2003;32(1):127–8.

    Article  Google Scholar 

  • Greenfield H, Southgate DA. Food composition data: production, management, and use. Rome: Food & Agriculture Organization; 2003.

    Google Scholar 

  • Guarro J, Gené J, Stchigel AM. Developments in fungal taxonomy. Clin Microbiol Rev. 1999;12(3):454–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurjar MS, Ali S, Akhtar M, Singh KS. Efficacy of plant extracts in plant disease management. Agric Sci. 2012;3(3):425.

    CAS  Google Scholar 

  • Hagedorn D. Pea enation mosaic enamovirus: ecology and control. In: The plant viruses. Boston: Springer; 1996. p. 345–56.

    Chapter  Google Scholar 

  • Hamwieh A, Imtiaz M. Identifying water-responsive and drought-tolerant chickpea genotypes. Crop Pasture Sci. 2015;66(10):1003–11.

    Article  CAS  Google Scholar 

  • Harlan JR. Agricultural origins: centres and non-centres. Science. 1971;174(4008):468–74.

    Article  CAS  PubMed  Google Scholar 

  • Heydari A, Pessarakli M. A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci. 2010;10(4):273–90.

    Article  Google Scholar 

  • Hijmans RJ, Guarino L, Cruz M, Rojas E. Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Resour Newsl. 2001;127:15–9.

    Google Scholar 

  • Hirdyani H. Nutritional composition of chickpea (Cicer arietinum L) and value added products – a review. Indian J Community Med. 2014;26(Supp 2):102–6.

    Google Scholar 

  • Hua L, Yong C, Zhanquan Z, Boqiang L, Guozheng Q, Shiping T. Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables. Food Qual Saf. 2018;2(3):111–9.

    Article  CAS  Google Scholar 

  • Hughes G, Keatinge J, Cooper P, Dee N. Solar radiation interception and utilization by chickpea (Cicer arietinum L.) crops in Northern Syria. J Agric Sci. 1987;108(2):419–24.

    Article  Google Scholar 

  • Jain R. Pulse expert: an expert system for the diagnosis and control of diseases in pulse crops. Expert Syst Appl. 2011;38(9):11463–71.

    Article  Google Scholar 

  • Johansen C, Bakr M, Islam MS, Mondal N, Afzal A, MacLeod W, Pande S, Siddique KH. Integrated crop management of chickpea in environments of Bangladesh prone to Botrytis grey mould. Field Crop Res. 2008;108(3):238–49.

    Article  Google Scholar 

  • Joint FAO/WHO. Carbohydrates in human nutrition: report of a joint FAO. Rome: WHO, FAO; 1998.

    Google Scholar 

  • Jukanti AK, Gaur PM, Gowda C, Chibbar RN. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Br J Nutr. 2012;108(S1):S11–26.

    Article  CAS  PubMed  Google Scholar 

  • Kaiser W, Ramsey M, Makkouk K, Bretag T, Açikgöz N, Kumar J, Nutter F. Foliar diseases of cool season food legumes and their control. In: Linking research and marketing opportunities for pulses in the 21st century. Dordrecht: Springer; 2000. p. 437–55.

    Chapter  Google Scholar 

  • Kim W, Park C-M, Park J-J, Akamatsu HO, Peever TL, Xian M, Gang DR, Vandemark G, Chen W. Functional analyses of the Diels-Alderase gene sol5 of Ascochyta rabiei and Alternaria solani indicate that the Solana pyrone phytotoxins are not required for pathogenicity. Mol Plant-Microbe Interact. 2015;28(4):482–96.

    Article  CAS  PubMed  Google Scholar 

  • Kumar P. Food and nutrition security in India: the way forward. Agric Econ Res Rev. 2017;30(1):1–21.

    Article  Google Scholar 

  • Kumar K, Sardana S, Singh M, Gautam N. Management of germplasm collections in chickpea. Int J Agric Environ Biotechnol. 2016;1(3):565–76.

    Article  Google Scholar 

  • Kumar M, Yusuf MA, Nigam M. An update on genetic modification of chickpea for increased yield and stress tolerance. Mol Biotechnol. 2018;60(8):651–63.

    Article  CAS  PubMed  Google Scholar 

  • Lammerts van Bueren E, Ranganathan R, Sorensen N (Eds). Proceedings of the 1st world conference on organic seed, FAO, Rome, 5–7 July 2004, pp.1–5.

    Google Scholar 

  • Landa BB, Navas-Cortés JA, Hervás A, Jiménez-Díaz RM. Influence of temperature and inoculum density of Fusarium oxysporum f. sp. ciceris on suppression of Fusarium wilt of chickpea by rhizosphere bacteria. Phytopathology. 2001;91(8):807–16.

    Article  CAS  PubMed  Google Scholar 

  • Leroux P, Fritz R, Debieu D, Albertini C, Lanen C, Bach J, Gredt M, Chapeland F. Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Manag Sci. 2002;58(9):876–88.

    Article  CAS  PubMed  Google Scholar 

  • Malhi S, Nyborg M, Beauchamp E. Large granules, nests or bands: methods of increasing efficiency of fall-applied urea for small cereal grains in North America. Fertil Res. 1994;38(1):61–87.

    Article  Google Scholar 

  • Manstretta V, Rossi V. Effects of weather variables on ascospore discharge from Fusarium graminearum perithecia. PLoS One. 2015;10(9):e0138860.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCleary BV. Dietary fibre analysis. Proc Nutr Soc. 2003;62(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  • Misra A, Singhal N, Sivakumar B, Bhagat N, Jaiswal A, Khurana L. Nutrition transition in India: secular trends in dietary intake and their relationship to diet-related non-communicable diseases. J Diabetes. 2011;3(4):278–92.

    Article  PubMed  Google Scholar 

  • Mohammed A, Tana T, Singh P, Molla A, Seid A. Identifying best crop management practices for chickpea (Cicer arietinum L.) in North-Eastern Ethiopia under climate change condition. Agric Water Manag. 2017;194:68–77.

    Article  Google Scholar 

  • Monte E. Understanding Trichoderma: between biotechnology and microbial ecology. Int Microbiol. 2001;4(1):1–4.

    CAS  PubMed  Google Scholar 

  • Moreno M-T, Cubero J. Variation in Cicer arietinum L. Euphytica. 1978;27(2):465–85.

    Article  Google Scholar 

  • Narayanasamy P. Microbial plant pathogens-detection and disease diagnosis, viral and viroid pathogens. Dordrecht: Springer Netherlands; 2011.

    Book  Google Scholar 

  • Nene Y, Reddy M, Haware M, Ghanekar A, Amin K, Pande S, Sharma M. Field diagnosis of chickpea diseases and their control. In: Information bulletin no. 28 (revised): International Crops Research Institute for the Semi-Arid Tropics. 2012.

    Google Scholar 

  • Nicholson SE. A detailed look at the recent drought situation in the Greater Horn of Africa. J Arid Environ. 2014;103:71–9.

    Article  Google Scholar 

  • Pande S, Siddique K, Kishore G, Bayaa B, Gaur P, Gowda C, Bretag T, Crouch J. Ascochyta blight of chickpea (Cicer arietinum L.): a review of biology, pathogenicity, and disease management. Aust J Agric Res. 2005;56(4):317–32.

    Article  Google Scholar 

  • Pande S, Kishore GK, Upadhyaya H, Rao JN. Identification of sources of multiple disease resistance in mini-core collection of chickpea. Plant Dis. 2006;90(9):1214–8.

    Article  CAS  PubMed  Google Scholar 

  • Pande S, Sharma M, Ghosh R, Rao S, Sharma R, Jha A. Opportunities for chickpea production in rain fed rice fallows of India. Baseline Survey Report. 2012.

    Google Scholar 

  • Perttilä S, Valaja J, Jalava T. Apparent ileal digestibility of amino acids and metabolisable energy value in grains for broilers. Agric Food Sci. 2005;14(4):325–34.

    Article  Google Scholar 

  • Purushothaman R, Upadhyaya H, Gaur P, Gowda C, Krishnamurthy L. Kabuli and desi chickpeas differ in their requirement for reproductive duration. Field Crop Res. 2014;163:24–31.

    Article  Google Scholar 

  • Rasool S, Abdel Latef A, Ahmad P. Chickpea: role and responses under abiotic and biotic stress. In: Legumes under environmental stress: yield, improvement and adaptations. Chichester: Wiley; 2015. p. 67–79.

    Chapter  Google Scholar 

  • Rimal NS, Kumar S, Chahal V, Singh V. Impact of adoption of improved varieties of chickpea (Cicer arietinum) on yield and income in Madhya Pradesh. Indian J Agric Sci. 2015;85(4):555–60.

    Google Scholar 

  • Rousta I, Javadizadeh F, Dargahian F, Ólafsson H, Shiri-Karimvandi A, Vahedinejad SH, Doostkamian M, Monroy Vargas ER, Asadolahi A. Investigation of vorticity during prevalent winter precipitation in Iran. Adv Meteorol. 2018;2018:1–13.

    Article  Google Scholar 

  • Saccardo F, Calcagno F. Consideration of chickpea plant ideotypes for spring and winter sowing. Options Méditerr. 1990;9:35–41.

    Google Scholar 

  • Sagi MS, Deokar AA, Tar’an B. Genetic analysis of NBS-LRR gene family in chickpea and their expression profiles in response to Ascochyta blight infection. Front Plant Sci. 2017;8(838):1–14.

    Google Scholar 

  • Salam MU, Davidson JA, Thomas GJ, Ford R, Jones RA, Lind beck KD, MacLeod WJ, Kimber RB, Galloway J, Mantri N. Advances in winter pulse pathology research in Australia. Australas Plant Pathol. 2011;40:549–67.

    Article  Google Scholar 

  • Santra D, Singh G, Kaiser W, Gupta V, Ranjekar P, Muehlbauer F. Molecular analysis of Ascochyta rabiei (Pass.) Labr, the pathogen of Ascochyta blight in chickpea. Theor Appl Genet. 2001;102(5):676–82.

    Article  CAS  Google Scholar 

  • Sarmah B, Acharjee S, Sharma H. Chickpea: crop improvement under changing environment conditions. In: Improving crop productivity in sustainable agriculture. Weinheim: Wiley-VCH; 2012. p. 361–80.

    Chapter  Google Scholar 

  • Saxena N, Saxena M, Johansen C, Virmani S, Harris H. Adaptation of chickpea in the West Asia and North Africa Region. Andhra Prasdesh: ICRISAT-ICARDA; 1996.

    Google Scholar 

  • Sehulster L, Chinn R. Centres for Disease Control and Prevention Healthcare Infection Control Practices Advisory Committee. Guidelines for environmental infection control in health-care facilities. MMWR. 2003;52(RR10):1–42.

    PubMed  Google Scholar 

  • Serraj R, Bidinger F, Chauhan Y, Seetharama N, Nigam S, Saxena N. Management of drought in ICRISAT cereal and legume mandate crops. In: Water productivity in agriculture: limits and opportunities for improvement. Wallingford: CABI; 2003. p. 127–44.

    Chapter  Google Scholar 

  • Shafique A, Rehman S, Khan A, Kazi AG. Improvement of legume crop production under environmental stresses through biotechnological intervention. In: Emerging technologies and management of crop stress tolerance. Amsterdam: Elsevier; 2014. p. 1–22.

    Google Scholar 

  • Shamsi S, Khatun A. Prevalence of fungi in different varieties of chickpea (Cicer arietinum L.) seeds in storage. J Bangladesh Acad Sci. 2016;40(1):37–44.

    Article  CAS  Google Scholar 

  • Sharma M, Ghosh R. An update on genetic resistance of chickpea to Ascochyta blight. J Agron. 2016;6(1):18.

    Article  CAS  Google Scholar 

  • Singh K. Winter chickpea: problems and potential in the Mediterranean region. Options Méditerr. 1990;9:25–34.

    Google Scholar 

  • Singh K, Reddy M. Improving chickpea yield by incorporating resistance to Ascochyta blight. Theor Appl Genet. 1996;92(5):509–15.

    Article  CAS  PubMed  Google Scholar 

  • Smith RA, Schuetz M, Karlen SD, Bird D, Tokunaga N, Sato Y, Mansfield SD, Ralph J, Samuels AL. Defining the diverse cell populations contributing to lignification in Arabidopsis stems. Plant Physiol. 2017;174(2):1028–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotelo A, Flores F, Hernández M. Chemical composition and nutritional value of Mexican varieties of chickpea (Cicer arietinum L.). Plant Food Hum Nutr. 1987;37(4):299–306.

    Article  CAS  Google Scholar 

  • Stagnari F, Maggio A, Galieni A, Pisante M. Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Agric. 2017;4(2):1–13.

    Google Scholar 

  • Stevens DA. Diagnosis of fungal infections: current status. J Antimicrob Chemother. 2002;49(suppl_1):11–9.

    Article  CAS  PubMed  Google Scholar 

  • Sujak A, Kotlarz A, Strobel W. Compositional and nutritional evaluation of several lupin seeds. Food Chem. 2006;98(4):711–9.

    Article  CAS  Google Scholar 

  • Summerfield R, Roberts E, Erskine W, Ellis R. Effects of temperature and photoperiod on flowering in lentils (Lens culinaris Medic.). Ann Bot. 1985;56(5):659–71.

    Article  Google Scholar 

  • Tanno K-I, Willcox G. The origins of cultivation of Cicer arietinum L. and Viciafaba L.: early finds from Tell el-Kerkh, North-West Syria, late 10th millennium Bp. Veg Hist Archaeobot. 2006;15(3):197–204.

    Article  Google Scholar 

  • Ten Have A, Espino JJ, Dekkers E, Van Sluyter SC, Brito N, Kay J, González C, van Kan JA. The Botrytis cinerea aspartic proteinase family. Fungal Genet Biol. 2010;47(1):53–65.

    Article  PubMed  CAS  Google Scholar 

  • Tivoli B, Baranger A, Avila CM, Banniza S, Barbetti M, Chen W, Davidson J, Lindeck K, Kharrat M, Rubiales D. Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica. 2006;147(1–2):223–53.

    Article  Google Scholar 

  • Toker C, Lluch C, Tejera N, Serraj R, Siddique K. Abiotic stresses. In: Chickpea breeding and management. Wallingford: CABI; 2007. p. 474.

    Chapter  Google Scholar 

  • Trumbo P, Schlicker S, Yates AA, Poos M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Acad Nutr Diet. 2002;102(11):1621–30.

    Google Scholar 

  • Uchida K, Akashi T, Aoki T. The missing link in leguminous pterocarpan biosynthesis is a dirigent domain-containing protein with isoflavanol dehydratase activity. Plant Cell Physiol. 2017;58(2):398–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udall JA, Wendel JF. Polyploidy and crop improvement. Crop Sci. 2006;46(Supplement_1):S3–14.

    Article  CAS  Google Scholar 

  • Upadhyaya HD. Geographical patterns of variation for morphological and agronomic characteristics in the chickpea germplasm collection. Euphytica. 2003;132(3):343–52.

    Article  Google Scholar 

  • Van den Brink J, de Vries RP. Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol. 2011;91(6):1477–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Maesen L. A monograph of the genus, with special references to the chickpea (Cicer arietinum L.) its ecology and cultivation. Wageningen: H Veenman & Zonen; 1972. p. 1–341.

    Google Scholar 

  • Van der Maessen L. Cicer L.: a monograph of the genus, with special reference to the chickpea (Cicer arietinum L.), its ecology and cultivation. Wageningen: Veenman; 1972.

    Google Scholar 

  • Venn B, Mann J. Cereal grains, legumes and diabetes. Eur J Clin Nutr. 2004;58(11):1443–61.

    Article  CAS  PubMed  Google Scholar 

  • Vidal T, Lusley P, Leconte M, de Vallavieille-Pope C, Huber L, Saint-Jean S. Cultivar architecture modulates spore dispersal by rain splash: a new perspective to reduce disease progression in cultivar mixtures. PLoS One. 2017;12(11):e0187788.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waliyar F, Kumar KVK, Diallo M, Traore A, Mangala U, Upadhyaya H, Sudin H. Resistance to pre-harvest aflatoxin contamination in ICRISAT’s groundnut mini core collection. Eur J Plant Pathol. 2016;145(4):901–13.

    Article  CAS  Google Scholar 

  • Who J, Consultation FE. Diet, nutrition and the prevention of chronic diseases. World Health Organ Tech Rep Ser. 2003;916(i–viii):1–149.

    Google Scholar 

  • Williamson B, Tudzynski B, Tudzynski P, van Kan JA. Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol. 2007;8(5):561–80.

    Article  CAS  PubMed  Google Scholar 

  • Wilson C, Solar J, El Ghaouth A, Wisniewski M. Rapid evaluation of plant extracts and essential oils for antifungal activity against Botrytis cinerea. Plant Dis. 1997;81(2):204–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vandana, U.K., Barlaskar, N.H., Kalita, R., Laskar, I.H., Mazumder, P.B. (2020). The Vital Foliar Diseases of Cicer arietinum L. (Chickpea): Science, Epidemiology, and Management. In: Singh, B., Singh, G., Kumar, K., Nayak, S., Srinivasa, N. (eds) Management of Fungal Pathogens in Pulses. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-35947-8_10

Download citation

Publish with us

Policies and ethics