Skip to main content

Engineered Nanomaterial Interaction with Epithelial and Immune Cells upon Mucosal Drug Delivery

  • Chapter
  • First Online:
Mucosal Delivery of Drugs and Biologics in Nanoparticles

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 41))

  • 653 Accesses

Abstract

The mucosal membranes (i.e. oral, and nasal cavities, gut and female reproductive tract) throughout the body are ideal locations for drug delivery as they result in rapid uptake of the pharmaceutical into the blood system; however, these membranes are protected by the mucosal immune system (MIS). This intricate network of epithelial cells, microbiota, immune cells and mucus present a unique challenge for drug delivery due to their barrier functions and responses to foreign pathogens. There is a constant need to improve drug delivery methods, particularly in regard to mucosal drug delivery. The application of engineered nanomaterials (ENM), due to their unique physicochemical properties, have significant potential to improve mucosal drug delivery. This chapter will discuss key physicochemical properties (i.e. size, shape, surface functionalization, and solubility) and how modification of these properties can alter the biological impact of ENMs. Finally, a brief overview of the normal function of key MIS cells (i.e. epithelial cells, goblet cells, Paneth cells, dendritic cells, macrophages, T and B lymphocytes, mast cells, and endothelial cells) and how ENM exposure alters their function will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang X, Reece SP, Brown JM. Immunotoxicological impact of engineered nanomaterial exposure: mechanisms of immune cell modulation. Toxicol Mech Methods. 2013;23:168–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McGhee JR, Fujihashi K. Inside the mucosal immune system. PLoS Biol. 2012;10:e1001397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.

    Article  CAS  PubMed  Google Scholar 

  4. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48.

    Article  CAS  PubMed  Google Scholar 

  5. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1:297–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim CK, Kim T, Choi IY, Soh M, Kim D, Kim YJ, Jang H, Yang HS, Kim JY, Park HK, Park SP, Park S, Yu T, Yoon BW, Lee SH, Hyeon T. Ceria nanoparticles that can protect against ischemic stroke. Angew Chem Int Ed Engl. 2012;51:11039–43.

    Article  CAS  PubMed  Google Scholar 

  7. Heckert EG, Karakoti AS, Seal S, Self WT. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials. 2008;29:2705–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Crich SG, Terreno E, Aime S. Nano-sized and other improved reporters for magnetic resonance imaging of angiogenesis. Adv Drug Deliv Rev. 2017;119:61–72.

    Article  CAS  PubMed  Google Scholar 

  9. Kim IY, Joachim E, Choi H, Kim K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine. 2015;11:1407–16.

    Article  CAS  PubMed  Google Scholar 

  10. Mercer RR, Scabilloni JF, Hubbs AF, Battelli LA, McKinney W, Friend S, Wolfarth MG, Andrew M, Castranova V, Porter DW. Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol. 2013;10:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bacchetta R, Santo N, Valenti I, Maggioni D, Longhi M, Tremolada P. Comparative toxicity of three differently shaped carbon nanomaterials on Daphnia magna: does a shape effect exist? Nanotoxicology. 2018;12:201–23.

    Article  CAS  PubMed  Google Scholar 

  12. Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta. 2008;1778:660–9.

    Article  CAS  PubMed  Google Scholar 

  13. Kam KR, Walsh LA, Bock SM, Koval M, Fischer KE, Ross RF, Desai TA. Nanostructure-mediated transport of biologics across epithelial tissue: enhancing permeability via nanotopography. Nano Lett. 2013;13:164–71.

    Article  CAS  PubMed  Google Scholar 

  14. Lee VHL. Mucosal drug delivery. JNCI Monographs. 2001;2001:41–4.

    Article  Google Scholar 

  15. Li Z, Tan S, Li S, Shen Q, Wang K. Cancer drug delivery in the nano era: an overview and perspectives. (Review) Oncol Rep. 2017;38:611–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ke PC, Lin S, Parak WJ, Davis TP, Caruso F. A decade of the protein Corona. ACS Nano. 2017;11:11773–6.

    Article  CAS  PubMed  Google Scholar 

  17. Shannahan JH, Podila R, Aldossari AA, Emerson H, Powell BA, Ke PC, Rao AM, Brown JM. Formation of a protein corona on silver nanoparticles mediates cellular toxicity via scavenger receptors. Toxicol Sci. 2015;143:136–46.

    Article  CAS  PubMed  Google Scholar 

  18. Du XJ, Wang JL, Iqbal S, Li HJ, Cao ZT, Wang YC, Du JZ, Wang J. The effect of surface charge on oral absorption of polymeric nanoparticles. Biomater Sci. 2018;6:642–50.

    Article  CAS  PubMed  Google Scholar 

  19. Grafe C, Weidner A, Luhe MV, Bergemann C, Schacher FH, Clement JH, Dutz S. Intentional formation of a protein corona on nanoparticles: serum concentration affects protein corona mass, surface charge, and nanoparticle-cell interaction. Int J Biochem Cell Biol. 2016;75:196–202.

    Article  CAS  PubMed  Google Scholar 

  20. Despres HW, Sabra A, Anderson P, Hemraz UD, Boluk Y, Sunasee R, Ckless K. Mechanisms of the immune response cause by cationic and anionic surface functionalized cellulose nanocrystals using cell-based assays. Toxicol In Vitro. 2019;55:124–33.

    Article  CAS  PubMed  Google Scholar 

  21. Mokhtari B, Pourabdollah K. Applications of nano-baskets in drug development: high solubility and low toxicity. Drug Chem Toxicol. 2013;36:119–32.

    Article  CAS  PubMed  Google Scholar 

  22. Singh MK, Pooja D, Ravuri HG, Gunukula A, Kulhari H, Sistla R. Fabrication of surfactant-stabilized nanosuspension of naringenin to surpass its poor physiochemical properties and low oral bioavailability. Phytomedicine. 2018;40:48–54.

    Article  CAS  PubMed  Google Scholar 

  23. Liew FY, Girard JP, Turnquist HR. Interleukin-33 in health and disease. Nat Rev Immunol. 2016;16:676–89.

    Article  CAS  PubMed  Google Scholar 

  24. Gougeon ML, Melki MT, Saidi H. HMGB1, an alarmin promoting HIV dissemination and latency in dendritic cells. Cell Death Differ. 2012;19:96–106.

    Article  CAS  PubMed  Google Scholar 

  25. Miller AM. Role of IL-33 in inflammation and disease. J Inflamm (Lond). 2011;8:22.

    Article  CAS  Google Scholar 

  26. Wang X, Katwa P, Podila R, Chen P, Ke PC, Rao AM, Walters DM, Wingard CJ, Brown JM. Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Part Fibre Toxicol. 2011;8:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. 2013;2013:942916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Song D, Cheng Y, Li X, Wang F, Lu Z, Xiao X, Wang Y. Biogenic Nanoselenium particles effectively attenuate oxidative stress-induced intestinal epithelial barrier injury by activating the Nrf2 antioxidant pathway. ACS Appl Mater Interfaces. 2017;9:14724–40.

    Article  CAS  PubMed  Google Scholar 

  29. Ng CT, Yip GWC, Chen ES, Poh WYR, Bay BH, Yung LYL. Gold nanoparticles induce serum amyloid a 1-toll-like receptor 2 mediated NF-kB signaling in lung cells in vitro. Chem Biol Interact. 2018;289:81–9.

    Article  CAS  PubMed  Google Scholar 

  30. Birchenough GM, Johansson ME, Gustafsson JK, Bergstrom JH, Hansson GC. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 2015;8:712–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Inoue K, Takano H, Yanagisawa R, Sakurai M, Ichinose T, Sadakane K, Yoshikawa T. Effects of nano particles on antigen-related airway inflammation in mice. Respir Res. 2005;6:106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang J, Dong R, Zheng S. Roles of the inflammasome in the gutliver axis (review). Mol Med Rep. 2019;19:3–14.

    Article  CAS  PubMed  Google Scholar 

  33. Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A, Couillin I, Tschopp J. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta. Proc Natl Acad Sci U S A. 2010;107:19449–54.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yang EJ, Kim S, Kim JS, Choi IH. Inflammasome formation and IL-1beta release by human blood monocytes in response to silver nanoparticles. Biomaterials. 2012;33:6858–67.

    Article  CAS  PubMed  Google Scholar 

  35. Waddell A, Vallance JE, Hummel A, Alenghat T, Rosen MJ. IL-33 induces murine intestinal goblet cell differentiation indirectly via innate lymphoid cell IL-13 secretion. J Immunol. 2019;202:598–607.

    Article  CAS  PubMed  Google Scholar 

  36. Shi J. Defensins and Paneth cells in inflammatory bowel disease. Inflamm Bowel Dis. 2007;13:1284–92.

    Article  PubMed  Google Scholar 

  37. Maynard RL, Donaldson K, Tetley TD. Type 1 pulmonary epithelial cells: a new compartment involved in the slow phase of particle clearance from alveoli. Nanotoxicology. 2013;7:350–1.

    Article  PubMed  Google Scholar 

  38. Sager T, Wolfarth M, Keane M, Porter D, Castranova V, Holian A. Effects of nickel-oxide nanoparticle pre-exposure dispersion status on bioactivity in the mouse lung. Nanotoxicology. 2016;10:151–61.

    CAS  PubMed  Google Scholar 

  39. Sweeney S, Theodorou IG, Zambianchi M, Chen S, Gow A, Schwander S, Zhang JJ, Chung KF, Shaffer MS, Ryan MP, Porter AE, Tetley TD. Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells. Nanoscale. 2015;7:10398–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11:723–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gazzano E, Ghiazza M, Polimeni M, Bolis V, Fenoglio I, Attanasio A, Mazzucco G, Fubini B, Ghigo D. Physicochemical determinants in the cellular responses to nanostructured amorphous silicas. Toxicol Sci. 2012;128:158–70.

    Article  CAS  PubMed  Google Scholar 

  43. Schanen BC, Karakoti AS, Seal S, Drake DR III, Warren WL, Self WT. Exposure to titanium dioxide nanomaterials provokes inflammation of an in vitro human immune construct. ACS Nano. 2009;3:2523–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee JK, Sayers BC, Chun KS, Lao HC, Shipley-Phillips JK, Bonner JC, Langenbach R. Multi-walled carbon nanotubes induce COX-2 and iNOS expression via MAP kinase-dependent and -independent mechanisms in mouse RAW264.7 macrophages. Part Fibre Toxicol. 2012;9:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tsai CY, Lu SL, Hu CW, Yeh CS, Lee GB, Lei HY. Size-dependent attenuation of TLR9 signaling by gold nanoparticles in macrophages. J Immunol. 2012;188:68–76.

    Article  CAS  PubMed  Google Scholar 

  46. Rabolli V, Badissi AA, Devosse R, Uwambayinema F, Yakoub Y, Palmai-Pallag M, Lebrun A, De G, V, Couillin I, Ryffel B, Marbaix E, Lison D and Huaux F. The alarmin IL-1alpha is a master cytokine in acute lung inflammation induced by silica micro- and nanoparticles. Part Fibre Toxicol. 2014; 11: 69 .

    Google Scholar 

  47. Tang H, Xu M, Shi F, Ye G, Lv C, Luo J, Zhao L, Li Y. Effects and mechanism of Nano-copper exposure on hepatic cytochrome P450 enzymes in rats. Int J Mol Sci. 2018;19

    Google Scholar 

  48. Li R, Guiney LM, Chang CH, Mansukhani ND, Ji Z, Wang X, Liao YP, Jiang W, Sun B, Hersam MC, Nel AE, Xia T. Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model. ACS Nano. 2018;12:1390–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM, Addleman SR, Kaysen GA, Moudgil BM, Weber TJ. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci. 2007;100:303–15.

    Article  CAS  PubMed  Google Scholar 

  50. Murphy FA, Schinwald A, Poland CA, Donaldson K. The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells. Part Fibre Toxicol. 2012;9:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31:986–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Al-Banna NA, Cyprian F, Albert MJ. Cytokine responses in campylobacteriosis: linking pathogenesis to immunity. Cytokine Growth Factor Rev. 2018;41:75–87.

    Article  CAS  PubMed  Google Scholar 

  53. Di Paolo NC, Shayakhmetov DM. Interleukin 1alpha and the inflammatory process. Nat Immunol. 2016;17:906–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gazzinelli RT, Oswald IP, James SL and Sher A. IL-10 inhibits parasite killing and nitrogen oxide production by IFN-gamma-activated macrophages. J Immunol. 1992; 148: 1792–1796.

    Google Scholar 

  55. Huaux F. Emerging role of immunosuppression in diseases induced by micro- and Nano-particles: time to revisit the exclusive inflammatory scenario. Front Immunol. 2018;9(2364)

    Google Scholar 

  56. Yang W, Zhu G, Wang S, Yu G, Yang Z, Lin L, Zhou Z, Liu Y, Dai Y, Zhang F, Shen Z, Liu Y, He Z, Lau J, Niu G, Kiesewetter DO, Hu S, Chen X. Situ Dendritic Cell Vaccine for Effective Cancer Immunotherapy. ACS Nano. 2019;

    Google Scholar 

  57. Vang KB, Safina I, Darrigues E, Nedosekin D, Nima ZA, Majeed W, Watanabe F, Kannarpady G, Kore RA, Casciano D, Zharov VP, Griffin RJ, Dings RPM, Biris AS. Modifying dendritic cell activation with Plasmonic Nano vectors. Sci Rep. 2017;7:5513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pearce EJ, Everts B. Dendritic cell metabolism. Nat Rev Immunol. 2015;15:18–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang LW, Baumer W, Monteiro-Riviere NA. Cellular uptake mechanisms and toxicity of quantum dots in dendritic cells. Nanomedicine (Lond). 2011;6:777–91.

    Article  CAS  Google Scholar 

  60. Wilson NS, Young LJ, Kupresanin F, Naik SH, Vremec D, Heath WR, Akira S, Shortman K, Boyle J, Maraskovsky E, Belz GT, Villadangos JA. Normal proportion and expression of maturation markers in migratory dendritic cells in the absence of germs or toll-like receptor signaling. Immunol Cell Biol. 2008;86:200–5.

    Article  CAS  PubMed  Google Scholar 

  61. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 2002;23:445–9.

    Article  CAS  PubMed  Google Scholar 

  62. Heng BC, Zhao X, Tan EC, Khamis N, Assodani A, Xiong S, Ruedl C, Ng KW, Loo JS. Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles. Arch Toxicol. 2011;85:1517–28.

    Article  CAS  PubMed  Google Scholar 

  63. Winter M, Beer HD, Hornung V, Kramer U, Schins RP, Forster I. Activation of the inflammasome by amorphous silica and TiO2 nanoparticles in murine dendritic cells. Nanotoxicology. 2011;5:326–40.

    Article  CAS  PubMed  Google Scholar 

  64. Orlowski P, Tomaszewska E, Ranoszek-Soliwoda K, Gniadek M, Labedz O, Malewski T, Nowakowska J, Chodaczek G, Celichowski G, Grobelny J, Krzyzowska M. Tannic acid-modified silver and gold nanoparticles as novel stimulators of dendritic cells activation. Front Immunol. 2018;9(1115)

    Google Scholar 

  65. Su X, Fricke J, Kavanagh DG, Irvine DJ. In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol Pharm. 2011;8:774–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Villiers C, Freitas H, Couderc R, Villiers MB, Marche P. Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions. J Nanopart Res. 2010;12:55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Migdal C, Rahal R, Rubod A, Callejon S, Colomb E, trux-Tallau N, Haftek M, Vincent C, Serres M, Daniele S. Internalisation of hybrid titanium dioxide/Para-amino benzoic acid nanoparticles in human dendritic cells did not induce toxicity and changes in their functions. Toxicol Lett. 2010;199:34–42.

    Article  CAS  PubMed  Google Scholar 

  68. Krystel-Whittemore M, Dileepan KN, Wood JG. Mast cell: a multi-functional master cell. Front Immunol. 2015;6:620.

    PubMed  Google Scholar 

  69. Gilfillan AM, Tkaczyk C. Integrated signalling pathways for mast-cell activation. Nat Rev Immunol. 2006;6:218–30.

    Article  CAS  PubMed  Google Scholar 

  70. Chen EY, Garnica M, Wang YC, Mintz AJ, Chen CS, Chin WC. A mixture of anatase and rutile TiO(2) nanoparticles induces histamine secretion in mast cells. Part Fibre Toxicol. 2012;9(2):2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Aldossari AA, Shannahan JH, Podila R, Brown JM. Influence of physicochemical properties of silver nanoparticles on mast cell activation and degranulation. Toxicol In Vitro. 2015;29:195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alsaleh NB, Persaud I, Brown JM. Silver nanoparticle-directed mast cell degranulation is mediated through calcium and PI3K signaling independent of the high affinity IgE receptor. PLoS One. 2016;11:e0167366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shannahan JH, Kodavanti UP, Brown JM. Manufactured and airborne nanoparticle cardiopulmonary interactions: a review of mechanisms and the possible contribution of mast cells. Inhal Toxicol. 2012;24:320–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Katwa P, Wang X, Urankar RN, Podila R, Hilderbrand SC, Fick RB, Rao AM, Ke PC, Wingard CJ, Brown JM. A carbon nanotube toxicity paradigm driven by mast cells and the IL-(3)(3)/ST(2) axis. Small. 2012;8:2904–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wingard CJ, Walters DM, Cathey BL, Hilderbrand SC, Katwa P, Lin S, Ke PC, Podila R, Rao A, Lust RM, Brown JM. Mast cells contribute to altered vascular reactivity and ischemia-reperfusion injury following cerium oxide nanoparticle instillation. Nanotoxicology. 2011;5:531–45.

    Article  CAS  PubMed  Google Scholar 

  76. Wingard CJ, Walters DM, Cathey BL, Hilderbrand SC, Katwa P, Lin S, Ke PC, Podila R, Rao A, Lust RM, Brown JM. Mast cells contribute to altered vascular reactivity and ischemia-reperfusion injury following cerium oxide nanoparticle instillation. Nanotoxicology. 2011;5:531–45.

    Article  CAS  PubMed  Google Scholar 

  77. Yang W, Lee S, Lee J, Bae Y, Kim D. Silver nanoparticle-induced degranulation observed with quantitative phase microscopy. J Biomed Opt. 2010;15:045005.

    Article  CAS  PubMed  Google Scholar 

  78. Zarbock A, Ley K. Mechanisms and consequences of neutrophil interaction with the endothelium. Am J Pathol. 2008;172:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brown MA, Hatfield JK. Mast cells are important modifiers of autoimmune disease: with so much evidence, why is there still controversy? Front Immunol. 2012;3(147)

    Google Scholar 

  80. Norton SK, Dellinger A, Zhou Z, Lenk R, Macfarland D, Vonakis B, Conrad D, Kepley CL. A new class of human mast cell and peripheral blood basophil stabilizers that differentially control allergic mediator release. Clin Transl Sci. 2010;3:158–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56:1649–59.

    Article  CAS  PubMed  Google Scholar 

  82. Duan Y, Liu J, Ma L, Li N, Liu H, Wang J, Zheng L, Liu C, Wang X, Zhao X, Yan J, Wang S, Wang H, Zhang X, Hong F. Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials. 2010;31:894–9.

    Article  CAS  PubMed  Google Scholar 

  83. Wang X, Podila R, Shannahan JH, Rao AM, Brown JM. Intravenously delivered graphene nanosheets and multiwalled carbon nanotubes induce site-specific Th2 inflammatory responses via the IL-33/ST2 axis. Int J Nanomedicine. 2013;8:1733–48.

    PubMed  PubMed Central  Google Scholar 

  84. Lloyd CM, Hawrylowicz CM. Regulatory T cells in asthma. Immunity. 2009;31:438–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Baron PA, Deye GJ, Chen BT, Schwegler-Berry DE, Shvedova AA, Castranova V. Aerosolization of single-walled carbon nanotubes for an inhalation study. Inhal Toxicol. 2008;20:751–60.

    Article  CAS  PubMed  Google Scholar 

  86. Shurin MR, Yanamala N, Kisin ER, Tkach AV, Shurin GV, Murray AR, Leonard HD, Reynolds JS, Gutkin DW, Star A, Fadeel B, Savolainen K, Kagan VE, Shvedova AA. Graphene oxide attenuates Th2-type immune responses, but augments airway remodeling and hyperresponsiveness in a murine model of asthma. ACS Nano. 2014;8:5585–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Moon EY, Yi GH, Kang JS, Lim JS, Kim HM, Pyo S. An increase in mouse tumor growth by an in vivo immunomodulating effect of titanium dioxide nanoparticles. J Immunotoxicol. 2011;8:56–67.

    Article  CAS  PubMed  Google Scholar 

  88. Sang X, Zheng L, Sun Q, Li N, Cui Y, Hu R, Gao G, Cheng Z, Cheng J, Gui S, Liu H, Zhang Z, Hong F. The chronic spleen injury of mice following long-term exposure to titanium dioxide nanoparticles. J Biomed Mater Res A. 2012;100:894–902.

    Article  CAS  PubMed  Google Scholar 

  89. Park EJ, Yoon J, Choi K, Yi J, Park K. Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology. 2009;260:37–46.

    Article  CAS  PubMed  Google Scholar 

  90. Park EJ, Cho WS, Jeong J, Yi J, Choi K, Park K. Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology. 2009;259:113–21.

    Article  CAS  PubMed  Google Scholar 

  91. Park EJ, Kim H, Kim Y, Park K. Intratracheal instillation of platinum nanoparticles may induce inflammatory responses in mice. Arch Pharm Res. 2010;33:727–35.

    Article  CAS  PubMed  Google Scholar 

  92. Michaelsen TE, Emilsen S, Sandin RH, Granerud BK, Bratlie D, Ihle O, Sandlie I. Human secretory IgM antibodies activate human complement and offer protection at mucosal surface. Scand J Immunol. 2017;85:43–50.

    Article  CAS  PubMed  Google Scholar 

  93. Ognik K, Sembratowicz I, Cholewinska E, Jankowski J, Kozlowski K, Juskiewicz J, Zdunczyk Z. The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood. Anim Sci J. 2018;89:579–88.

    Article  CAS  PubMed  Google Scholar 

  94. Long J, Xiao Y, Liu L, Cao Y. The adverse vascular effects of multi-walled carbon nanotubes (MWCNTs) to human vein endothelial cells (HUVECs) in vitro: role of length of MWCNTs. J Nanobiotechnology. 2017;15:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sobczynski DJ, Eniola-Adefeso O. IgA and IgM protein primarily drive plasma corona-induced adhesion reduction of PLGA nanoparticles in human blood flow. Bioeng Transl Med. 2017;2:180–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhong L, Simard MJ, Huot J. Endothelial microRNAs regulating the NF-kappaB pathway and cell adhesion molecules during inflammation. FASEB J. 2018;32:4070–84.

    Article  CAS  PubMed  Google Scholar 

  97. Cao Y, Roursgaard M, Danielsen PH, Moller P, Loft S. Carbon black nanoparticles promote endothelial activation and lipid accumulation in macrophages independently of intracellular ROS production. PLoS One. 2014;9:e106711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Alinovi R, Goldoni M, Pinelli S, Campanini M, Aliatis I, Bersani D, Lottici PP, Iavicoli S, Petyx M, Mozzoni P, Mutti A. Oxidative and pro-inflammatory effects of cobalt and titanium oxide nanoparticles on aortic and venous endothelial cells. Toxicol In Vitro. 2015;29:426–37.

    Article  CAS  PubMed  Google Scholar 

  99. LeBlanc AJ, Cumpston JL, Chen BT, Frazer D, Castranova V, Nurkiewicz TR. Nanoparticle inhalation impairs endothelium-dependent vasodilation in subepicardial arterioles. J Toxicol Environ Health A. 2009;72:1576–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stapleton PA, Minarchick VC, Cumpston AM, McKinney W, Chen BT, Sager TM, Frazer DG, Mercer RR, Scabilloni JF, Andrew M, Castranova V, Nurkiewicz TR. Impairment of coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation: a time-course study. International Journal of Molecular Science. 2012;13:13781–803.

    Article  CAS  Google Scholar 

  101. Minarchick VC, Stapleton PA, Porter DW, Wolfarth MG, Ciftyurek E, Barger M, Sabolsky EM, Nurkiewicz TR. Pulmonary cerium dioxide nanoparticle exposure differentially impairs coronary and mesenteric arteriolar reactivity. Cardiovasc Toxicol. 2013;13:323–37.

    Article  CAS  PubMed  Google Scholar 

  102. LeBlanc AJ, Moseley AM, Chen BT, Frazer D, Castranova V, Nurkiewicz TR. Nanoparticle inhalation impairs coronary microvascular reactivity via a local reactive oxygen species-dependent mechanism. Cardiovasc Toxicol. 2010;10:27–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Knuckles TL, Yi J, Frazer DG, Leonard HD, Chen BT, Castranova V, Nurkiewicz TR. Nanoparticle inhalation alters systemic arteriolar vasoreactivity through sympathetic and cyclooxygenase-mediated pathways. Nanotoxicology. 2011;

    Google Scholar 

  104. Journeay WS, Suri SS, Fenniri H, Singh B. High-aspect ratio nanoparticles in nanotoxicology. Integr Environ Assess Manag. 2008;4:128–9.

    Article  PubMed  Google Scholar 

  105. Tamagawa E, Bai N, Morimoto K, Gray C, Mui T, Yatera K, Zhang X, Xing L, Li Y, Laher I, Sin DD, Man SF, van Eeden SF. Particulate matter exposure induces persistent lung inflammation and endothelial dysfunction. Am J Physiol Lung Cell Mol Physiol. 2008;295:L79–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Khan MA, Khan MJ. Nano-gold displayed anti-inflammatory property via NF-kB pathways by suppressing COX-2 activity. Artificial Cells, Nanomedicine, and Biotechnology. 2018;46:1149–58.

    Article  CAS  PubMed  Google Scholar 

  107. Minarchick VC, Stapleton PA, Sabolsky EM, Nurkiewicz TR. Cerium dioxide nanoparticle exposure improves microvascular dysfunction and reduces oxidative stress in spontaneously hypertensive rats. Front Physiol. 2015;6(339)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared M. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minarchick, V.C., Brown, J.M. (2020). Engineered Nanomaterial Interaction with Epithelial and Immune Cells upon Mucosal Drug Delivery. In: Muttil, P., Kunda, N. (eds) Mucosal Delivery of Drugs and Biologics in Nanoparticles. AAPS Advances in the Pharmaceutical Sciences Series, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-35910-2_9

Download citation

Publish with us

Policies and ethics