Skip to main content

Emerging Trends in Polymers, Composites, and Nano Biomaterial Applications

  • Chapter
  • First Online:
Bio-Materials and Prototyping Applications in Medicine

Abstract

This chapter introduces synthetic polymers, carbon-based composites, and carbon nanotube-based biomaterials. The implementation of hydrogels for drug delivery carriers and tissue engineering applications is discussed. Further, the enhancement of mechanical properties with nano-filled polymers for dental restorations and structural applications is elaborated. The efficacy of bio-functional coatings with elastomeric polymers loaded with anti-proliferation drugs for cardiovascular devices is presented. Finally, the use of carbon nanotubes is demonstrated for high-fidelity bio-sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Yaacobi, S. Sideman, N. Lotan, A mechanistic model for the enzymic degradation of synthetic biopolymers. Life Support Syst. 3(4), 313–326 (1985)

    CAS  PubMed  Google Scholar 

  2. W. L. Gore & Associates Inc., http://www.goremedical.com/viabahnsfa/index

  3. W. L. Gore & Associates Inc., http://www.goremedical.com/vg/index. http://www.goremedical.com/suture/index

  4. O. Wichterle, D. Lim, Hydrophilic gels for biological use. Nature 185, 117–118 (1960)

    Article  Google Scholar 

  5. H. He, X. Cao, L.J. Lee, Design of a novel hydrogel-based intelligent system for controlled drug release. J. Control. Release 95(3), 391–402 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. K.T. Nguyen, J.L. West, Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23, 4307–4314 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. Y. An, J.A. Hubbell, Intraarterial protein delivery via intimally-adherent bilayer hydrogels. J. Control. Release 64, 205–215 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. Larsen, United States Patent – 4,495,313, Preparation of hydrogel for soft contact lens with water displaceable boric acid ester, Jan 1985

    Google Scholar 

  9. J.A. Hubbell, Hydrogel systems for barriers and local drug delivery in the control of wound healing. J. Control. Release 39, 305–313 (1996)

    Article  CAS  Google Scholar 

  10. P. J. Gardner, A. W. Fountain III (eds.), Chemical and Biological Sensing VII. Proceedings of the SPIE, SPIE Press, Bellingham, Washington 6218 (2006), p. 62180K

    Google Scholar 

  11. Desai S, Moore A, Sankar, Invention disclosure: Method for producing uniform sized bio-polymer microbeads using specialized inkjet printing, NCA&T SU: EN0046 0307, Nov 2006

    Google Scholar 

  12. International Standards Organization, Dental materials—water-based cements Part 1—powder/liquid acid–base cement. 2001; ISO 9917-1

    Google Scholar 

  13. International Standards Organization, Dentistry—resin-based filling, restorative and luting materials. 2000; ISO 4049

    Google Scholar 

  14. International Standards Organization, Dental water-based cements Part 2—light activated cements. 1998; ISO 9917-2

    Google Scholar 

  15. http://www.ada.org/prof/resources/positions/standards/denmat.asp

  16. J.P. Van Nieuwenhuysen, W. D’Hoore, J. Carvalho, V. Qvist, J. Dent. 31(6), 395–405 (2003)

    Article  PubMed  Google Scholar 

  17. A. Htang, M. Ohsawa, H. Matsumoto, Dent. Mater. 11(1), 7 (1995)

    Article  CAS  PubMed  Google Scholar 

  18. U.J. Yap, X. Wang, X. Wu, S.M. Chung, Biomaterials 25, 2179 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. M. Chen, C. Chen, S. Hsu, S. Sun, W. Su, Dent. Mater. 22(2), 138–145 (2006)

    Article  PubMed  CAS  Google Scholar 

  20. P.M. Ajayan, L.S. Schadler, Adv. Mater. 12(10), 750 (2000)

    Article  CAS  Google Scholar 

  21. O. Breuer, U. Sundararaj, Polym. Compos. 25(6), 630 (2004)

    Article  CAS  Google Scholar 

  22. L.S. Schadler, S.C. Giannaris, P.M. Ajayan, Appl. Phys. Lett. 73(26), 3842 (1998)

    Article  CAS  Google Scholar 

  23. Y. Ou, F. Yang, Yu ZZ. J. Polym. Sci. B Polym. Phys. 36(5), 789 (1998)

    Article  CAS  Google Scholar 

  24. A.B. Oraleg, L. Wictorin, A. Larsson, Photopolymerizable composition, Patent WO 95/30402 (1995)

    Google Scholar 

  25. D. Kaisaki, S. Mitra, W.J. Schultz, R.J. Devoe. Visible light curable epoxy system with enhanced depth of cure. Patent WO 96/13528, 1-49 (1996)

    Google Scholar 

  26. C.C. Chappelow, C.S. Pinzino, L. Jeang, C.D. Harris, A.J. Holder, J.D. Eick, J. Appl. Polym. Sci. 76, 1715 (2000)

    Article  CAS  Google Scholar 

  27. J. Black, G.W. Hastings, Handbook of Biomaterial Properties (Chapman and Hall, London, UK, 1998)

    Book  Google Scholar 

  28. W.C. Hayes, B. Snyder, Mechanical properties of bone, The joint ASME-ASCE applied mechanics, fluid engineering and bioengineering conference, AMD, vol. 45, Boulder, Colorado, 1981

    Google Scholar 

  29. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)

    Book  Google Scholar 

  30. R. Huiskes, Acta Orthop. Scand. 64(6), 699 (1993)

    Article  CAS  PubMed  Google Scholar 

  31. S.L. Evans, P.J. Gregson, Biomaterials 19, 1329 (1998)

    Article  CAS  PubMed  Google Scholar 

  32. L. Claes, C. Burri, R. Neugebauer, U. Gruber, Experimental investigations of hip prostheses with carbon fiber reinforced carbon shafts and ceramic heads, in Ceramics in Surgery, (Elsevier, Amsterdam, 1983)

    Google Scholar 

  33. M. Marcolongo, P. Ducheyne, E. Schepers, J. Garino, The halo effect: surface reactions of a bioactive glass fiber/polymeric composite in vitro and in vivo, 5th Bio Congress, Toronto, 1996

    Google Scholar 

  34. J. Guan, M.S. Sacks, E.J. Beckman, W.R. Wagner, Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine. J. Biomed. Mater. Res. 61, 493–503 (2002)

    Article  CAS  PubMed  Google Scholar 

  35. T. Hanawa, In vivo metallic biomaterials and surface modification. Mater. Sci. Eng. A 267, 260–266 (1999)

    Article  Google Scholar 

  36. L.R. Madden, D.J. Mortisen, E.M. Sussman, S.K. Dupras, J.A. Fugate, J.L. Cuy, K.D. Hauch, M.A. Laflamme, C.E. Murry, B.D. Ratner, Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl. Acad. Sci. U. S. A. 107, 15211–15216 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. R. Kornowski, M. Hong, F. Tio, O. Bramwell, H. Wu, M. Leon, In-stent restenosis: Contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J. Am. Coll. Cardiol. 31, 224–230 (1988)

    Article  Google Scholar 

  38. A. Farb, A. Burke, F. Kolodgie, R. Virmani, Pathological mechanisms of fatal late coronary stent thrombosis in humans. Circulation 108, 1701–1706 (2003)

    Article  PubMed  Google Scholar 

  39. H. Schuhlen, A. Kastrati, J. Mehilli, J. Hausleiter, J. Pache, J. Dirsschinger, A. Schomig, Restenosis detected by routine angiographic follow-up and late mortality after coronary stent placement. Am. Heart J. 147, 317–322 (2004)

    Article  PubMed  Google Scholar 

  40. H. Burt, W. Hunter, Drug-eluting stents: A multidisciplinary success story. Adv. Drug Deliv. Rev. 58, 350–357 (2006)

    Article  CAS  PubMed  Google Scholar 

  41. R. Fattori, T. Piva, Drug-eluting stents in vascular intervention. Lancet 361, 247–249 (2003)

    Article  PubMed  Google Scholar 

  42. J. Schierholz, H. Steinhauser, A.F.E. Rump, R. Berkels, G. Pulvere, Controlled release of antibiotics from biomedical polyurethanes: Morphological and structural features. Biomaterials 18, 839–844 (1997)

    Article  CAS  PubMed  Google Scholar 

  43. J. Perkins, Z. Xu, A. Roy, P. Kumta, J.D. Waterman, S. Desai, Polymeric coatings for biodegradable implants. Adv. Eng. Solut. (2014)

    Google Scholar 

  44. J. Perkins, Y. Hong, S.H. Ye, W.R. Wagner, S. Desai, Direct writing of bio-functional coatings for cardiovascular applications. J. Biomed. Mater. Res. A 102(12), 4290–4300 (2014)

    PubMed  Google Scholar 

  45. X. Wang, Piezoelectric inkjet technology—from graphic printing to material deposition, in Nanotech Conference and Expo, (Houston, Texas, CRC Press, 2009)

    Google Scholar 

  46. S. Desai, A. Richardson, S.J. Lee, Bioprinting of FITC Conjugated Bovine Serum Albumin towards stem cell differentiation. Proceedings of the industrial engineers research conference, Cancun, Mexico, 2010

    Google Scholar 

  47. S. Desai, H. Benjamin, Direct-writing of biomedia for drug delivery and tissue regeneration, in Printed Biomaterials, (Springer, New York, NY, 2010), pp. 71–89

    Chapter  Google Scholar 

  48. P. Lu, B. Ding, Applications of electrospun fibers. Recent Pat. Nanotechnol. 2, 169–182 (2008)

    Article  CAS  PubMed  Google Scholar 

  49. P.K. Chu, J.Y. Chen, L.P. Wang, N. Huang, Plasma-surface modification of biomaterials. Mater. Sci. Eng. R. Rep. 36, 143–206 (2002)

    Article  Google Scholar 

  50. F. Poncin-Epaillard, G. Lageay, Surface engineering of biomaterials with plasma techniques. J. Biomater. Sci. Polym. Ed. 14, 1005–1028 (2003)

    Article  CAS  PubMed  Google Scholar 

  51. H. Fang, Dip coating assisted polylactic acid deposition on steel surface: Film thickness affected by drag force and gravity. Mater. Lett. 62, 3739–3741 (2008)

    Article  CAS  Google Scholar 

  52. S. Desai, J. Perkins, B. Harrison, J. Sankar, Understanding release kinetics of biopolymer drug delivery microcapsules for biomedical applications. Mater. Sci. Eng. B 168(1–3), 127–131 (2009)

    Google Scholar 

  53. S. Desai, J. Sankar, A. Moore, B. Harrison, Biomanufacturing of microcapsules for drug delivery and tissue engineering applications. Industrial engineers research conference, Vancouver, CA, 2008

    Google Scholar 

  54. S. Desai, A. Moore, J. Sankar, Understanding microdroplet formations for biomedical applications, in ASME International Mechanical Engineering Congress & Exposition, (Boston, MA, 2008)

    Google Scholar 

  55. J. Perkins, S. Desai, B. Harrison, J. Sankar, Understanding release kinetics of calcium alginate microcapsules using drop on demand inkjet printing, in ASME International Mechanical Engineering Congress & Exposition, (FL, 2009)

    Google Scholar 

  56. K. Norman, A. Siahkali, B. Larsen, 6 Studies of spin-coated polymer films. Annu. Rep. Sect. C 101, 174–201 (2005)

    Article  CAS  Google Scholar 

  57. J. Perkins, S. Desai, W. Wagner, Y. Hong, Biomanufacturing: Direct-writing of controlled release coatings for cardiovascular (stents) applications. Proceedings of the industrial engineers research conference, Reno, NV, 2011

    Google Scholar 

  58. E. Adarkwa, S. Desai, J.M. Ohodnicki, A. Roy, B. Lee, P.N. Kumta, Amorphous calcium phosphate blended polymer coatings for biomedical implants. Proceedings of the industrial engineers research conference, Montreal, Canada, 2014

    Google Scholar 

  59. J. Cordeiro, S. Desai, The Leidenfrost effect at the nanoscale. ASME J. Micro Nano-Manuf. 4(4), 041001 (2016)

    Article  Google Scholar 

  60. J. Cordeiro, S. Desai, The nanoscale Leidenfrost effect. Nanoscale 11, 12139–12151 (2019)

    Article  Google Scholar 

  61. T. Akter, S. Desai, Developing a predictive model for nanoimprint lithography using artificial neural networks. Mater. Des. 160(15), 836–848 (2018)

    Article  CAS  Google Scholar 

  62. A. Gaikwad, S. Desai, Understanding material deformation in nanoimprint of gold using molecular dynamics simulations. Am. J. Eng. Appl. Sci. 11(2), 837–844 (2018)

    Article  Google Scholar 

  63. J. Rodrigues, S. Desai, The effect of water droplet size, temperature and impingement velocity on gold wettability at the nanoscale. ASME J. Micro Nano-Manuf. 5(3), 031008 (2017)

    Article  Google Scholar 

  64. W. Li, B. Ruff, J. Yin, R. Venkatasubramanian, D. Mast, A. Sowani, A. Krishnaswamy, et al., Tiny medicine, in Nanotube Superfiber Materials, (William Andrew Publishing, Norwich, NY, 2014), pp. 713–747

    Google Scholar 

  65. S. Desai, M. Ravi Shankar, Polymers, composites and Nano biomaterials: Current and future developments, in Bio-Materials and Prototyping Applications in Medicine, (Springer, Boston, MA, 2008), pp. 15–26

    Chapter  Google Scholar 

  66. S. Desai, B. Bidanda, P. Bartolo, Metallic and ceramic bio-materials: current and future developments, in Bio-Materials and Prototyping Applications in Medicine, (Springer, Boston, MA, 2008), pp. 1–14

    Google Scholar 

  67. S. Desai, B. Harrison, Direct-writing of biomedia for drug delivery and tissue regeneration, in Printed Biomaterials, (Springer, New York, NY, 2010), pp. 71–89

    Chapter  Google Scholar 

  68. S. Desai, North Carolina A&T State University, Methods and apparatus of manufacturing micro and nano-scale features. U.S. Patent 8,573,757, 2013

    Google Scholar 

  69. E. Adarkwa, S. Desai, J.M. Ohodnicki, A. Roy, B. Lee, P.N. Kumta, Amorphous calcium phosphate blended polymer coatings for biomedical implants, in IIE Annual Conference Proceedings, Curran Press, Red Hook, NY, (2014), p. 132

    Google Scholar 

  70. X.Y. Qin, J.G. Kim, J.S. Lee, Synthesis and magnetic properties of nanostructured g-Ni–Fe alloys. Nanostruct. Mater. 11(2), 259–270 (1999)

    Article  CAS  Google Scholar 

  71. M. Ferrari, Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer 5(3), 161–171 (2005)

    Article  CAS  PubMed  Google Scholar 

  72. J.K. Vasir, M.K. Reddy, V.D. Labhasetwar, Nanosystems in drug targeting: Opportunities and challenges. Curr. Nanosci. 1(1), 47–64 (2005)

    Article  CAS  Google Scholar 

  73. T.J. Webster, R.W. Siegel, R. Bizios, Osteoblast adhesion on nanophase ceramics. Biomaterials 20(13), 1221–1227 (1999)

    Article  CAS  PubMed  Google Scholar 

  74. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  75. J.P. Lu, Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79, 1297–1300 (1997)

    Article  CAS  Google Scholar 

  76. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)

    Article  CAS  Google Scholar 

  77. M. Kociak, A.Y. Kasumov, S. Gueron, B. Reulet, I.I. Khodos, Y.B. Gorbatov, et al., Superconductivity in ropes o single-walled carbon nanotubes. Phys. Rev. Lett. 86, 2416–2419 (2001)

    Article  CAS  PubMed  Google Scholar 

  78. S.N. Song, X.K. Wang, R.P.H. Chang, J.B. Ketterson, Electronic properties of grapite nanotubes from galvanomagnetic effects. Phys. Rev. Lett. 72, 697–700 (1994)

    Article  CAS  PubMed  Google Scholar 

  79. B.S. Harrison, A. Atala, Carbon nanotube applications in tissue engineering. Biomaterials 28, 344–353 (2007)

    Article  CAS  PubMed  Google Scholar 

  80. P.J.A. Borm, D. Robbins, S. Haubold, T. Kuhlbusch, H. Fissan, K. Donaldson, R. Schins, V. Stone, W. Kreyling, J. Lademann, J. Krutmann, D. Warheit, E. Oberdorster, The potential risks of nanomaterials: A review carried out for ECETOC. Part. Fibre Toxicol. 11, 3 (2006)

    Google Scholar 

  81. G. Oberdörster, E. Oberdörster, J. Oberdörster, Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7), 823–839 (2005)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. K. Donaldson, V. Stone, A. Clouter, L. Renwick, W. MacNee, Ultrafine particles. Occup. Environ. Med. 58, 211–216, 119 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. G. Oberdorster, J.N. Finkelstein, C. Johnston, R. Gelein, C. Cox, R. Baggs, et al., Acute pulmonary effects of ultrafine particles in rats and mice. Res. Rep. Health Eff. lnst. 96, 5–74 (2000)

    Google Scholar 

  84. P.U. Jani, D.E. McCarthy, A.T. Florence, Titanium dioxide (rutile) particles uptake from the rat GI tract and translocation to systemic organs after oral administration. J. Pharm. 105, 157–168 (1994)

    CAS  Google Scholar 

  85. J. Bockmann, H. Lahl, T. Eckert, B. Unterhalt, Titanium blood levels of dialysis patients compared to healthy volunteers. Pharmazie 55, 468 (2000)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the US National Science Foundation (NSF CMMI: Award 1663128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salil Desai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Desai, S., Shankar, M.R. (2021). Emerging Trends in Polymers, Composites, and Nano Biomaterial Applications. In: Bártolo, P.J., Bidanda, B. (eds) Bio-Materials and Prototyping Applications in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-35876-1_2

Download citation

Publish with us

Policies and ethics