Skip to main content

Abstract Similarity, Fractals, and Chaos

  • Chapter
  • First Online:
Dynamics with Chaos and Fractals

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 29))

Abstract

To prove presence of chaos for fractals, a new mathematical concept of abstract similarity is introduced. As an example, the space of symbolic strings on a finite number of symbols is proved to possess the property. Moreover, Sierpinski fractals, Koch curve as well as Cantor set satisfy the definition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Addabbo, A. Fort, S. Rocchi, V. Vignoli, Digitized chaos for pseudo-random number generation in cryptography, in Chaos-Based Cryptography. Studies in Computational Intelligence, vol. 354, ed. by L. Kocarev, S. Lian (Springer, Berlin, Heidelberg, 2011)

    MATH  Google Scholar 

  2. M. Akhmet, E.M. Alejaily, Abstract Similarity, Fractals and Chaos. ArXiv e-prints, arXiv:1905.02198, 2019 (submitted)

    Google Scholar 

  3. M. Akhmet, E.M. Alejaily, Domain-structured chaos in a Hopfield neural network. Int. J. Bifurc. Chaos, 2019 (in press)

    Google Scholar 

  4. M. Akhmet, E.M. Alejaily, Abstract fractals. Discontinuity Nonlinearity Complexity (in press) (arXiv: 1908.04273)

    Google Scholar 

  5. M. Akhmet, E.M. Alejaily, Chaos on the Multi-Dimensional Cube. ArXiv e-prints, arXiv:1908.11194, 2019 (submitted)

    Google Scholar 

  6. M.U. Akhmet, M.O. Fen, Replication of chaos. Commun. Nonlinear Sci. Numer. Simul. 18, 2626–2666 (2013)

    Article  MathSciNet  Google Scholar 

  7. M. Akhmet, M.O. Fen, Unpredictable points and chaos. Commun. Nonlinear Sci. Numer. Simul. 40, 1–5 (2016)

    Article  MathSciNet  Google Scholar 

  8. M. Akhmet, M.O. Fen, Poincaré chaos and unpredictable functions. Commun. Nonlinear Sci. Numer. Simul. 48, 85–94 (2017)

    Article  MathSciNet  Google Scholar 

  9. A. Avila, C.G. Moreira, Bifurcations of unimodal maps, in Dynamical systems, Part II. Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., 2003, pp. 1–22

    Google Scholar 

  10. M.F. Barnsley, Fractals Everywhere (Academic Press, London, 1988)

    MATH  Google Scholar 

  11. G. Boeing, Visual analysis of nonlinear dynamical systems: Chaos, fractals, self-similarity and the limits of prediction. Systems 4, 1–18 (2016)

    Article  Google Scholar 

  12. G. Chen, Y. Huang, Chaotic Maps: Dynamics, Fractals and Rapid Fluctuations, Synthesis Lectures on Mathematics and Statistics (Morgan and Claypool Publishers, Texas, 2011)

    Google Scholar 

  13. R.L. Devaney, An Introduction to Chaotic Dynamical Systems (Addison-Wesley, USA, 1989)

    MATH  Google Scholar 

  14. M. Hata, Topological aspects of self-similar sets and singular functions, in Fractal Geometry and Analysis, ed. by J. Belair, S. Dubuc (Kluwer Academic Publishers, Dordrecht, 1991), pp. 255–276

    Chapter  Google Scholar 

  15. B.R. Hunt, V.Y. Kaloshin, Prevalence, in Handbook of Dynamical Systems, vol. 3, ed. by H. Broer, F. Takens, B. Hasselblatt (Elsevier Science, Amsterdam, 2010), pp. 43–87

    Chapter  Google Scholar 

  16. P.E.T. Jorgensen, Analysis and Probability: Wavelets, Signals, Fractals, Graduate Texts in Mathematics, vol. 234 (Springer, New York, 2006)

    Google Scholar 

  17. G.C. Layek, An Introduction to Dynamical Systems and Chaos (Springer, India, 2015)

    Book  Google Scholar 

  18. R. Li, X. Zhou, A note on chaos in product maps. Turk. J. Math. 37, 665–675 (2013)

    Article  MathSciNet  Google Scholar 

  19. B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1983)

    Book  Google Scholar 

  20. C. Masoller, A.C. Schifino, R.L. Sicardi, Characterization of strange attractors of Lorenz model of general circulation of the atmosphere. Chaos Solitons Fractals 6, 357–366 (1995)

    Article  Google Scholar 

  21. H-O. Peitgen, H. Jürgens, D. Saupe, Chaos and Fractals (Springer, New York, 2004)

    Book  Google Scholar 

  22. S. Sato, K. Gohara, Fractal transition in continuous recurrent neural networks. Int. J. Bifurc. Chaos. 11, 421–434 (2001)

    Article  MathSciNet  Google Scholar 

  23. S. Wiggins, Global Bifurcation and Chaos: Analytical Methods (Springer, New York, Berlin, 1988)

    Book  Google Scholar 

  24. G.M. Zaslavsky, M. Edelman, B.A. Niyazov, Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics. Chaos 7, 159–181 (1997)

    Article  MathSciNet  Google Scholar 

  25. E. Zeraoulia, J.C. Sprott, Robust Chaos and Its Applications (World Scientific, Singapore, 2012)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akhmet, M., Fen, M.O., Alejaily, E.M. (2020). Abstract Similarity, Fractals, and Chaos. In: Dynamics with Chaos and Fractals. Nonlinear Systems and Complexity, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-35854-9_12

Download citation

Publish with us

Policies and ethics