Skip to main content

Geometric Brain Surface Network for Brain Cortical Parcellation

  • Conference paper
  • First Online:
Graph Learning in Medical Imaging (GLMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11849))

Included in the following conference series:

Abstract

A large number of surface-based analyses on brain imaging data adopt some specific brain atlases to better assess structural and functional changes in one or more brain regions. In these analyses, it is necessary to obtain an anatomically correct surface parcellation scheme in an individual brain by referring to the given atlas. Traditional ways to accomplish this goal are through a designed surface-based registration or hand-crafted surface features, although both of them are time-consuming. A recent deep learning approach depends on a regular spherical parameterization of the mesh, which is computationally prohibitive in some cases and may also demand further post-processing to refine the network output. Therefore, an accurate and fully-automatic cortical surface parcellation scheme directly working on the original brain surfaces would be highly advantageous. In this study, we propose an end-to-end deep brain cortical parcellation network, called DBPN. Through intrinsic and extrinsic graph convolution kernels, DBPN dynamically deciphers neighborhood graph topology around each vertex and encodes the deciphered knowledge into node features. Eventually, a non-linear mapping between the node features and parcellation labels is constructed. Our model is a two-stage deep network which contains a coarse parcellation network with a U-shape structure and a refinement network to fine-tune the coarse results. We evaluate our model in a large public dataset and our work achieves superior performance than state-of-the-art baseline methods in both accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://mindboggle.info/data.html.

  2. 2.

    http://surfer.nmr.mgh.harvard.edu/.

References

  1. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  2. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage 9(2), 179–194 (1999)

    Article  Google Scholar 

  3. Dhillon, I.S., Guan, Y., Kulis, B.: Weighted graph cuts without eigenvectors a multilevel approach. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1944–1957 (2007)

    Article  Google Scholar 

  4. Fey, M., Eric Lenssen, J., Weichert, F., Müller, H.: SplineCNN: fast geometric deep learning with continuous B-spline kernels. In: CVPR, pp. 869–877 (2018)

    Google Scholar 

  5. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  6. Klein, A., Tourville, J.: 101 labeled brain images and a consistent human cortical labeling protocol. Front. Neurosci. 6, 171 (2012)

    Article  Google Scholar 

  7. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: CVPR, pp. 5115–5124 (2017)

    Google Scholar 

  8. Paus, T.: How environment and genes shape the adolescent brain. Horm. Behav. 64(2), 195–202 (2013)

    Article  Google Scholar 

  9. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Seong, S.B., Pae, C., Park, H.J.: Geometric convolutional neural network for analyzing surface-based neuroimaging data. Front. Neuroinform. 12, 42 (2018)

    Article  Google Scholar 

  11. Wu, Z., Li, G., Wang, L., Shi, F., Lin, W., Gilmore, J.H., Shen, D.: Registration-free infant cortical surface parcellation using deep convolutional neural networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 672–680. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_77

    Chapter  Google Scholar 

  12. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.i., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. arXiv preprint arXiv:1806.03536 (2018)

  13. Zhang, W., Wang, J., Fan, L., Zhang, Y., Fox, P.T., Eickhoff, S.B., Yu, C., Jiang, T.: Functional organization of the fusiform gyrus revealed with connectivity profiles. Hum. Brain Mapp. 37(8), 3003–3016 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by NIH (R21AG043760, R21AG049- 216, and U54EB020403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, W., Wang, Y. (2019). Geometric Brain Surface Network for Brain Cortical Parcellation. In: Zhang, D., Zhou, L., Jie, B., Liu, M. (eds) Graph Learning in Medical Imaging. GLMI 2019. Lecture Notes in Computer Science(), vol 11849. Springer, Cham. https://doi.org/10.1007/978-3-030-35817-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35817-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35816-7

  • Online ISBN: 978-3-030-35817-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics