Quantum Dot Interfaces for Memristor

Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 27)


Memristor, a two-terminal device, whose resistance changes according to the amount of charge that passes through, has become a popular choice for memory arrays and is expected to play a significant role in emerging memory technologies. These memories have a high speed, high density, non-destructive readout, long endurance, low operating voltage, simple structure, low-cost, and also a unique possibility of multilevel data storage. These devices can be constructed with a wide range of materials, such as metal oxides, nanomaterials, and organic materials, polymers with simple crossbar geometry. As a result, wide-range of mechanisms does play a role in electrical memory switching effect. Hence, a brief overview of all such mechanisms has been discussed. In the beginning, zero-dimensional materials, also referred as quantum dots, have become fascinating materials due to their size- and shape-tuneable optoelectronic properties, with a large surface to volume ratio, which can be suitably modified with caping molecules. In the recent past, these are explored as potential candidate for memristor with unique advantages. During this period, a lot of developments are witnessed; the present chapter is aimed to cover all such aspects.


  1. 1.
    Yu, S., & Chen, P.-Y. (2016). Emerging memory technology recent trends and prospects. IEEE Solid-State Circuits Magazine, 8, 43.CrossRefGoogle Scholar
  2. 2.
    Zidan, M. A., Strachan, J. P., & Lu, W. D. (2018). The future of electronics based on memristive systems. Nature Electronics, 1(1), 22–29.CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Chen, A. (2016). A review of emerging non-volatile memory (NVM) technologies and applications. Solid-State Electronics, 125, 25–38.CrossRefGoogle Scholar
  5. 5.
    Wong, H. S., & Salahuddin, S. (2015). Memory leads the way to better computing. Nature Nanotechnology, 10(3), 191–194.CrossRefGoogle Scholar
  6. 6.
    Jian-Gang, Z. (2008). Magnetoresistive random access memory: The path to competitiveness and scalability. Proceedings of the IEEE, 96(11), 1786–1798.CrossRefGoogle Scholar
  7. 7.
    Jo, S. H., Kim, K.-H., & Lu, W. (2009). High-density crossbar arrays based on a Si memristive system. ACS Nano Letters, 9(2), 870–874.CrossRefGoogle Scholar
  8. 8.
    Zhao, X., Fan, Z., Xu, H., Wang, Z., Xu, J., Ma, J., & Liu, Y. (2018). Reversible alternation between bipolar and unipolar resistive switching in Ag/MoS2/Au structure for multilevel flexible memory. Journal of Material Chemistry C, 6, 7195–7200. Scholar
  9. 9.
    Chua, L. O. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18, 507–519.CrossRefGoogle Scholar
  10. 10.
    Hickmott, T. W. (1962). Low-frequency negative resistance in thin anodic oxide films. Journal of Applied Physics, 33, 2669–2682.CrossRefGoogle Scholar
  11. 11.
    Gibbons, J. F., & Beadle, W. E. (1964). Switching properties of thin Nio films. Solid-State Electronics, 7, 785–790.CrossRefGoogle Scholar
  12. 12.
    Argall, F. (1968). Switching phenomena in titanium oxide thin films. Solid-State Electronics, 11, 535–541.CrossRefGoogle Scholar
  13. 13.
    Thakoor, S., Moopenn, A., Daud, T., & Thakoor, A. P. (1990). Solid-state thin-film memistor for electronic neural networks. Journal of Applied Physics, 67, 3132.CrossRefGoogle Scholar
  14. 14.
    Buot, F. A., & Rajagopal, A. K. (1994). Binary information storage at zero bias in quantum-well diodes. Journal of Applied Physics, 76, 5552.CrossRefGoogle Scholar
  15. 15.
    Beck, A., Bednorz, J. G., Gerber, C., Rossel, C., & Widmer, D. (2000). Reproducible switching effect in thin oxide films for memory applications. Applied Physics Letters, 77, 139.CrossRefGoogle Scholar
  16. 16.
    Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83.CrossRefGoogle Scholar
  17. 17.
    Lim, E., & Ismail, R. (2015). Conduction mechanism of valence change resistive switching memory: A survey. Electronics, 4(3), 586–613.CrossRefGoogle Scholar
  18. 18.
    Jeong, D. S., Thomas, R., Katiyar, R. S., Scott, J. F., Kohlstedt, H., Petraru, A., & Hwang, C. S. (2012). Emerging memories: resistive switching mechanisms and current status. Reports on Progress in Physics, 75(7), 076502.CrossRefGoogle Scholar
  19. 19.
    Mickel, P. R., Lohn, A. J., & Marinella, M. J. (2014). Memristive switching: physical mechanisms and applications. Modern Physics Letters B, 28(10), 1430003.CrossRefGoogle Scholar
  20. 20.
    Waser, R., & Aono, M. (2007). Nanoionics-based resistive switching memories. Natuture Materials, 6, 833–840.CrossRefGoogle Scholar
  21. 21.
    Menzel, S., Böttger, U., Wimmer, M., & Salinga, M. (2015). Physics of the switching kinetics in resistive memories. Advanced Functional Materials, 25(40), 6306–6325.CrossRefGoogle Scholar
  22. 22.
    Zhuravlev, M. Y., Jaswal, S. S., Tsymbal, E. Y., & Sabirianov, R. F. (2005). Ferroelectric switch for spin injection. Applied Physics Letters, 87(22).Google Scholar
  23. 23.
    Dobrosavljevi, V. (2011). Introduction to metal-insulator transitions. Oxford University Press.
  24. 24.
    Simmons, J. G., & Verderber, R. R. (1967). New conduction and reversible memory phenomena in thin insulating films. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 301(1464), 77–102.Google Scholar
  25. 25.
    Thurstans, R. E., Wild, P. C., & Oxley, D. P. (1974). Enhanced forming in Al/SiOx/Au structures under pulsed bias. Thin Solid Films, 20, 281–286.CrossRefGoogle Scholar
  26. 26.
    Fujii, T., & Kawasaki, M. (2005). Hysteretic current–voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3∕SrTi0.99Nb0.01O3. Applied Physics Letters, 86(1).Google Scholar
  27. 27.
    Sawa, A., Fujii, T., Kawasaki, M., & Tokura, Y. (2006). Interface resistance switching at a few nanometer thick perovskite manganite active layers. Applied Physics Letters, 88(23), 232112.CrossRefGoogle Scholar
  28. 28.
    Hoyos, J. A., Kotabage, C., & Vojta, T. (2007). Effects of dissipation on a quantum critical point with disorder. Physical Review Letters, 99(23), 230601.CrossRefGoogle Scholar
  29. 29.
    Ahn, C. H., Bhattacharya, A., Ventra, M. D., et al. (2006). Electrostatic modification of Novel materials. Review of Modern Physics, 78(4), 1185–1212.CrossRefGoogle Scholar
  30. 30.
    Mott, N. F. (1949). The basis of the electron theory of metals, with special reference to the transition metals. Proceedings of the Physical Society A, 62.Google Scholar
  31. 31.
    Kim, D. S., Kim, Y. H., Lee, C. E., & Kim, Y. T. (2006). Colossal electroresistance mechanism in Au∕Pr0.7Ca0.3MnO3∕Ptsandwich structure: Evidence for a Mott transition. Physical Review B, 74(17).Google Scholar
  32. 32.
    Fors, R., Khartsev, S. I., & Grishin, A. M. (2005). Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition. Physical Review B, 71(4).Google Scholar
  33. 33.
    Chen, A. (2015). Electronic effect resistive switching memories. In Emerging nanoelectronic devices (pp. 164–180).Google Scholar
  34. 34.
    Tsymbal, E. Y., & Kohlstedt, H. (2006). Applied physics. Tunneling across a ferroelectric. Science, 313(5784), 181–183.CrossRefGoogle Scholar
  35. 35.
    Blom, P. W. M., Wolf, R. M., Cillessen, J. F. M., & Krijn, M. P. C. M. (1994). Ferroelectric Schottky diode. Physical Review Letters, 73(15), 2107–2110.CrossRefGoogle Scholar
  36. 36.
    Qu, H., Yao, W., Garcia, T., & Zhang, J. (2003). Nanoscale polarization manipulation and conductance switching in ultrathin films of a ferroelectric copolymer. Applied Physics Letters, 82, 4322–4324.CrossRefGoogle Scholar
  37. 37.
    Kohlstedt, H., Pertsev, N. A., Rodríguez Contreras, J., & Waser, R. (2005). Theoretical current-voltage characteristics of ferroelectric tunnel junctions. Physical Review B, 72, 125341.CrossRefGoogle Scholar
  38. 38.
    Velev, J. P., Duan, C.-G., Burton, J. D., Smogunov, A., Niranjan, M. K., Tosatti, E., Jaswal, S. S., & Tsymbal, E. Y. (2009). Magnetic tunnel junctions with ferroelectric barriers: prediction of four resistance States from first principles. Nano Lett, 9(1), 427–432.CrossRefGoogle Scholar
  39. 39.
    Scott, J. F. (2007). Applications of modern ferroelectrics source. Science, 315, 954–959.CrossRefGoogle Scholar
  40. 40.
    Batra, I. P., & Silverman, B. D. (1972). Thermodynamic stability of thin ferroelectric films. Solid State Communications, 11, 291–294.CrossRefGoogle Scholar
  41. 41.
    Hou, P., Wang, J., & Zhong, X. (2017). Investigation of multilevel data storage in silicon-based polycrystalline ferroelectric tunnel junction. Scientific Reports, 7(1), 4525.CrossRefGoogle Scholar
  42. 42.
    Guo, X., Schindler, C., Menzel, S., & Waser, R. (2007). Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Applied Physics Letters, 91(13).Google Scholar
  43. 43.
    Menzel, S., Waters, M., Marchewka, A., Böttger, U., Dittmann, R., & Waser, R. (2011). Origin of the ultra-nonlinear switching kinetics in oxide-based resistive switches. Advanced Functional Materials, 21(23), 4487–4492.CrossRefGoogle Scholar
  44. 44.
    Buroff, A., Nebauer, E., Suptiz, P., & Willert, I. (1977). Migration of silver and gold in Amorphous As2S3. Physica status Solidi. a(40), K195.Google Scholar
  45. 45.
    Clymer, D. A., & Matin, M. A. (2005). Application of Mott-Gurney law to model the current-voltage relationship of PPV/CN-PPV with a thin-metal anode buffer. In Photonic Devices and Algorithms for Computing VII.Google Scholar
  46. 46.
    Liu, C.-Y., Sung, P.-W., Lai, C.-H., & Wang, H.-Y. (2011). Resistive Switching Characteristics of Cu/SiO2/Pt Structure. Materials Science Forum, 687, 167–173.CrossRefGoogle Scholar
  47. 47.
    Waser, R., Dittmann, R., Staikov, G., & Szot, K. (2009). Redox-based resistive switching memories - Nanoionic mechanisms, prospects, and challenges. Advanced Materials, 21(25-26), 2632–2663.CrossRefGoogle Scholar
  48. 48.
    Schindler, C., Weides, M., Kozicki, M. N., & Waser, R. (2008). Low current resistive switching in Cu–SiO2 cells. Applied Physics Letters, 92(12).Google Scholar
  49. 49.
    Ee, W. L., & Ismail, R. (2015). Conduction mechanism of valence change resistive switching memory: A survey. Electronics, 4, 586–613.CrossRefGoogle Scholar
  50. 50.
    Sun, P., Li, L., Lu, N., Lv, H., Liu, M., & Liu, S. (2014). Physical model for electroforming process in valence change resistive random access memory. Journal of Computational Electronics, 14(1), 146–150.CrossRefGoogle Scholar
  51. 51.
    You, S., Liu, B., Gao, Y., Wang, Y., Tang, C. Y., Huang, Y., & Ren, N. (2016). Monolithic porous Magnéli-phase Ti4O7 for electro-oxidation treatment of industrial wastewater. Electrochimica Acta, 214, 326–335.CrossRefGoogle Scholar
  52. 52.
    Akinaga, H., & Shima, H. (2010). Resistive random access memory (ReRAM) based on metal oxides. Proceedings of the IEEE, 98(12), 2237–2251.CrossRefGoogle Scholar
  53. 53.
    Munjal, S., & Khare, N. (2017). Valence change bipolar resistive switching accompanied with magnetization switching in CoFe2O4 thin film. Scientific Reports, 7(1), 12427.CrossRefGoogle Scholar
  54. 54.
    Lee, D., Woo, J., Cha, E., Park, S., Lee, S., Park, J., & Hwang, H. (2013). Defect engineering using bilayer structure in filament-type RRAM. IEEE Electron Device Letters, 34(10), 1250–1252.CrossRefGoogle Scholar
  55. 55.
    Phark, S.-H., & Chae, S. C. (2015). Initial defect configuration in NiO film for reliable unipolar resistance switching of Pt/NiO/Pt structure. Journal of Physics D: Applied Physics, 48, 155102.CrossRefGoogle Scholar
  56. 56.
    Lee, M.-J., Han, S., Jeon, S. H., Park, B. H., Kang, B. S., Ahn, S.-E., Kim, K. H., Lee, C. B., Kim, C. J., Yoo, I.-K., Seo, D. H., Li, X.-S., Park, J.-B., Lee, J.-H., & Park, Y. (2009). Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Letters, 9(4), 1476–1481.CrossRefGoogle Scholar
  57. 57.
    Kondo, H., Arita, M., Fujii, T., Kaji, H., Moniwa, M., Yamaguchi, T., Fujiwara, I., Yoshimaru, M., & Takahashi, Y. (2011). The observation of “Conduction Spot” on NiO resistance random access memory. Japanese Journal of Applied Physics, 50(8), 081101.CrossRefGoogle Scholar
  58. 58.
    Larentis, S., Nardi, F., Balatti, S., Member, S., Gilmer, D. C., & Ielmini, D. (2012). Resistive switching by voltage-driven ion migration in bipolar RRAM—Part II: modeling. IEEE Transactions on Electron Devices, 59(9), 2468–2475.CrossRefGoogle Scholar
  59. 59.
    Jeong, D. S., Schroeder, H., & Waser, R. (2007). Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack. Electrochemical and Solid-State Letters, 10(8), G51–G53.CrossRefGoogle Scholar
  60. 60.
    Uenuma, M., Ishikawa, Y., & Uraoka, Y. (2015). Joule heating effect in nonpolar and bipolar resistive random access memory. Applied Physics Letters, 107(7).Google Scholar
  61. 61.
    Caldwell, M. A., Jeyasingh, R. G. D., Wong, H.-S. P., & Milliron, D. J. (2012). Nanoscale phase change memory materials. Nanoscale, 4(15), 4382–4392.CrossRefGoogle Scholar
  62. 62.
    Shao, R., Zheng, K., Chen, Y., Zhang, B., Deng, Q., Jiao, L., Liao, Z., Zhang, Z., Zou, J., & Han, X. (2016). Direct observation of structural transitions in the phase change material Ge2Sb2Te5. Journal of Materials Chemistry C, 4(39), 9303–9309.CrossRefGoogle Scholar
  63. 63.
    Ovshinsky, S. R. (1968). Reversible electrical switching phenomena in disordered structures. Physical Review Letters, 21(20), 1450–1453.CrossRefGoogle Scholar
  64. 64.
    Lyeo, H.-K., Cahill, D. G., Lee, B.-S., Abelson, J. R., Kwon, M.-H., Kim, K.-B., Bishop, S. G., & Cheong, B.-K. (2006). Thermal conductivity of phase-change material Ge2Sb2Te5. Applied Physics Letters, 89(15).Google Scholar
  65. 65.
    Stocker, H. J. (1970). Phenomenology of switching and memoryeffects in semiconducting chalcogenide glasses. Journal of Non-Crystalline Solids, 2, 371–381.CrossRefGoogle Scholar
  66. 66.
    Matsunaga, T., & Yamada, N. (2004). Structural investigation of GeSb2Te4: A high-speed phase-change material. Physical Review B, 69(10), 104111.CrossRefGoogle Scholar
  67. 67.
    Salinga, M., Kersting, B., Ronneberger, I., Jonnalagadda, V. P., Vu, X. T., Le Gallo, M., Giannopoulos, I., Cojocaru-Mirédin, O., Mazzarello, R., & Sebastian, A. (2018). Monatomic phase change memory. Nature Materials, 17(8), 681–685.CrossRefGoogle Scholar
  68. 68.
    Raoux, S., Cheng, H.-Y., Jordan-Sweet, J. L., Muñoz, B., & Hitzbleck, M. (2009). Influence of interfaces and doping on the crystallization temperature of Ge–Sb. Applied Physics Letters, 94(18).Google Scholar
  69. 69.
    Tsymbal, E. Y., Gruverman, A., Garcia, V., Bibes, M., & Barthélémy, A. (2012). Ferroelectric and multiferroic tunnel junctions. MRS Bulletin, 37, 138–143.CrossRefGoogle Scholar
  70. 70.
    Stengel, M., Vanderbilt, D., & Spaldin, N. A. (2009). Enhancement of ferroelectricity at metal-oxide interfaces. Nature Materials, 8(5), 392–397.CrossRefGoogle Scholar
  71. 71.
    Garcia, V., & Bibes, M. (2014). Ferroelectric tunnel junctions for information storage and processing. Nature Communications, 5, 4289.CrossRefGoogle Scholar
  72. 72.
    Wen, Z., Li, C., Wu, D., Li, A., & Ming, N. (2013). Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nature Materials, 12(7), 617–621.CrossRefGoogle Scholar
  73. 73.
    Pantel, D., & Alexe, M. (2010). Electroresistance effects in ferroelectric tunnel barriers. Physical Review B, 82(13), 134105.CrossRefGoogle Scholar
  74. 74.
    Boyn, S., Girod, S., Garcia, V., Fusil, S., Xavier, S., Deranlot, C., Yamada, H., Carrétéro, C., Jacquet, E., Bibes, M., Barthélémy, A., & Grollier, J. (2014). High-performance ferroelectric memory based on fully patterned tunnel junctions. Applied Physics Letters, 104, 052909.CrossRefGoogle Scholar
  75. 75.
    Thomson, W. (1856). On the electro-dynamic qualities of metals:—Effects of magnetization on the electric conductivity of nickel and of iron. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 8, 546–550.Google Scholar
  76. 76.
    Nickel, J. (1995). Magnetoresistance, SAL, dual stripe, spin valve. In GMR magnetoresistance overview (pp. 95–60).Google Scholar
  77. 77.
    Tsang, C., Chen, M.-M., Yogi, T., & Ju, K. (1990). Gigabit density recording using dual-element MR/inductive heads on thin-film disks. IEEE Transactions on Magnetics, 26, 1689–1693.CrossRefGoogle Scholar
  78. 78.
    Baibich, M. N., Broto, J. M., Fert, A., Nguyen Van Dau, F., & Petroff, F. (1988). Giant magnetoresistance of (001) Fe/(001)Cr magnetic superlattices. Physics Review Letters, 61(21), 2472–2475.CrossRefGoogle Scholar
  79. 79.
    Bhatti, S., Sbiaa, R., Hirohata, A., Ohno, H., Fukami, S., & Piramanayagam, S. N. (2017). Spintronics based random access memory: a review. Materials Today, 20, 530–548.CrossRefGoogle Scholar
  80. 80.
    Wang, D., Anderson, J., & Daughton, J. M. (1997). Thermally stable, low saturation field, low hysteresis, high GMR CoFe/Cu multilayers. IEEE Transactions on Magnetics, 33, 3520–3522.CrossRefGoogle Scholar
  81. 81.
    Kowalska, E. (2018). Current-induced dynamics in hybrid geometry MgO-based spin-torque nano-oscillators (Dissertation, Technische Universitat Dresden).Google Scholar
  82. 82.
    Julliere, M. (1975). Tunnelling between ferromagnetic films. Physics Letters, 54A, 225–226.CrossRefGoogle Scholar
  83. 83.
    Wang, D., Nordman, C., Daughton, J. M., Qian, Z., & Fink, J. (2004). 70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference layers. IEEE Transactions on Magnetics, 40(4), 2269–2271.CrossRefGoogle Scholar
  84. 84.
    Djayaprawira, D. D., Tsunekawa, K., Nagai, M., Maehara, H., Yamagata, S., & Watanabe, N. (2005). 230% room-temperature magnetoresistance in CoFeB∕MgO∕CoFeB magnetic tunnel junctions. Applied Physics Letters, 86(9).Google Scholar
  85. 85.
    Akerman, J. (2005). Toward a universal memory. Science, 308, 508–510.CrossRefGoogle Scholar
  86. 86.
    Slaughter, J. M., Rizzo, N. D., Janesky, J., Whig, R., Mancoff, F. B., Houssameddine, D., Sun, J. J., Aggarwal, S., Nagel, K., Deshpande, S., Alam, S. M., Andre, T., & LoPresti, P. (2012). High density ST-MRAM technology. IEEE.Google Scholar
  87. 87.
    Amiri, P. K., Wang, K. L., & Galatsis, K. (2013). Voltage-controlled magnetic anisotropy (VCMA) switch and magneto-electric memory (MERAM). U.S. patent application Ser., No. 14/082,118 filed.Google Scholar
  88. 88.
    Valenzuela, S. O., & Tinkham, M. (2006). Direct electronic measurement of the spin Hall effect. Nature, 442(7099), 176–179.CrossRefGoogle Scholar
  89. 89.
    Chung, S. W., Kishi, T., Park, J. W., Yoshikawa, M., Park, K. S., Nagase, T., Sunouchi, K., Kanaya, H., Kim, G. C., Lee, M. S., Noma, K., Yamamoto, A., Rho, K. M., Tsuchida, K., Chung, S. J., Yi, J. Y., Kim, H. S., Chun, Y. S., Oyamatsu, H., & Hong, S. J. (2016). 4Gbit density STT-MRAM using perpendicular MTJrealized with compact cell structure. IEEE.Google Scholar
  90. 90.
    Babbage’s Analytical Engine, 1834–1871. (Trial model). Science Museum. Retrieved 23 August 2017.Google Scholar
  91. 91.
    Badzey, R. L., Zolfagharkhani, G., Gaidarzhy, A., & Mohanty, P. (2004). A controllable nanomechanical memory element. Applied Physics Letters, 85(16), 3587–3589.CrossRefGoogle Scholar
  92. 92.
    Czaplewski, D. A., Patrizi, G. A., Kraus, G. M., Wendt, J. R., Nordquist, C. D., Wolfley, S. L., Baker, M. S., & de Boer, M. P. (2009). A nanomechanical switch for integration with CMOS logic. Journal of Micromechanics and Microengineering, 19(8), 085003.CrossRefGoogle Scholar
  93. 93.
    Pantazi, A., et al. (2008). Probe-based ultrahigh-density storage technology. IBM Journal of Research and Development, 52(4/5), 493–511.CrossRefGoogle Scholar
  94. 94.
    Rueckes, T., Kim, K., Joselevich, E., Tseng, G. Y., Cheung, C.-L., & Lieber, C. M. (2000). Carbon nanotube-based nonvolatile random access memory for molecular computing. Science, 289, 94–97.CrossRefGoogle Scholar
  95. 95.
    Feng, X. L., Matheny, M. H., Zorman, C. A., Mehregany, M., & Roukes, M. L. (2010). Low voltage nanoelectromechanical switches based on silicon carbide nanowires. Nano Letters, 10(8), 2891–2896.CrossRefGoogle Scholar
  96. 96.
    Lefèvre, R., Goffman, M. F., Derycke, V., Miko, C., Forro, L., Bourgoin, J. P., & Hesto, P. (2005). Scaling law in carbon nanotube electromechanical devices. Physics Review Letters, 95(18), 185504.CrossRefGoogle Scholar
  97. 97.
    Hiremath, R. K., Rabinal, M. H. K., & Mulimani, B. G. (2010). Dipole tuning of charge transport in molecular junctions. Physical Chemistry Chemical Physics, 12(11), 2564–2568.CrossRefGoogle Scholar
  98. 98.
    Avouris, P. (2002). Molecular electronics with carbon nanotubes. Accounts of Chemical Research, 35(12), 1026–1034.CrossRefGoogle Scholar
  99. 99.
    Kim, W. Y., Choi, Y. C., Min, S. K., Cho, Y., & Kim, K. S. (2009). Application of quantum chemistry to nanotechnology: Electron and spin transport in molecular devices. Chem Soc Rev, 38(8), 2319–2333.CrossRefGoogle Scholar
  100. 100.
    Tao, N. J. (2006). Electron transport in molecular junctions. Nature Nanotechnology, 1, 173–181.CrossRefGoogle Scholar
  101. 101.
    Sun, L., Diaz-Fernandez, Y. A., Gschneidtner, T. A., Westerlund, F., Lara-Avilab, S., & Moth-Poulsen, K. (2014). Single-molecule electronics: From chemical design to functional devices. Chemical Society Review, 43(21), 7378–7411.CrossRefGoogle Scholar
  102. 102.
    Hsu, J. W. P., Loo, Y. L., Lang, D. V., & Rogers, J. A. (2003). Nature of electrical contacts in a metal–molecule–semiconductor system. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 21(4), 1928–1935.CrossRefGoogle Scholar
  103. 103.
    Wold, D. J., & Frisbie, C. D. (2000). Formation of metal−molecule−metal tunnel junctions: Microcontacts to alkanethiol monolayers with a conducting AFM tip. Journal of the American Chemical Society, 122(12), 2970–2971.CrossRefGoogle Scholar
  104. 104.
    Zhang, J. L., Zhong, J. Q., Lin, J. D., Hu, W. P., Wu, K., Xu, G. Q., Weeb, A. T. S., & Chen, W. (2015). Towards single molecule switches. Chemical Society Review, 44(10), 2998–3022.CrossRefGoogle Scholar
  105. 105.
    Xue, Y., & Datta, S. (1999). Negative differential resistance in the scanning-tunneling spectroscopy of organic molecules. Physical Review B, 59, 7852–7855.CrossRefGoogle Scholar
  106. 106.
    Nitzan, A. (2001). A relationship between electron-transfer rates and molecular conduction. The Journal of Physical Chemistry A, 105(12), 2677–2679.CrossRefGoogle Scholar
  107. 107.
    Moore, A. M., Yeganeh, S., Yao, Y., Claridge, S. A., Tour, J. M., Ratner, M. A., & Weiss, P. S. (2010). Polarizabilities of adsorbed and assembled molecules: measuring the conductance through buried contacts. ACS Nano, 4(12), 7630–7636.CrossRefGoogle Scholar
  108. 108.
    Vahl, A., Carstensen, J., Kaps, S., Lupan, O., Strunskus, T., Adelung, R., & Faupel, F. (2019). Concept and modelling of memsensors as two terminal devices with enhanced capabilities in neuromorphic engineering. Nature Scientific Reports, 9, 4361.CrossRefGoogle Scholar
  109. 109.
    Kulkarni, S. (2007). Nanotechnology, principles and practices (1st ed.). New Delhi: Capital Publishing Company. Retrieved from Scholar
  110. 110.
    Han, S.-T., Hu, L., Wang, X., Zhou, Y., Zeng, Y.-J., Ruan, S., Pan, C., & Peng, Z. (2017). Black phosphorus quantum dots with tunable memory properties and multilevel resistive switching characteristics. Advanced Science, 4(8), 1600435.CrossRefGoogle Scholar
  111. 111.
    Marta, R. Quantum dots: Harnessing the nanoscopic rainbow, chem13 news magazine. Retrieved from University of Waterloo, Waterloo, Ontario.
  112. 112.
    Seung-Yun, T., Seng, T. & Simon, M. (2012). Non-volatile memory devices and application. ISBN: 1-58883-250-3.Google Scholar
  113. 113.
    Ganeshan, D., Xie, F., Sun, Q., Li, Y., & Wei, M. (2018). Plasmonic effects of silver nanoparticles embedded in the counter electrode on the enhanced performance of dye-sensitized solar cells. Langmuir, 34(19), 5367–5373.CrossRefGoogle Scholar
  114. 114.
    Chen, H., Shao, L., Lia, Q., & Wang, J. (2013). Gold nanorods and their plasmonic properties. Chemical Society Reviews, 42(7), 2679–2724.CrossRefGoogle Scholar
  115. 115.
    Shahbazyan, T. V. (2014, 22 January). (challenges)Plasmonics theory and advances in computational chemistry and physics. In Plasmonic: Theory & applications.Google Scholar
  116. 116.
    Zhong, Y., Malagari, S. D., Hamilton, T., & Wasserman, D. (2015). Review of mid-infrared plasmonic materials. Journal of Nanophotonics, 9, 093791.CrossRefGoogle Scholar
  117. 117.
    Green, M. (2010). The nature of quantum dot capping ligands. Journal of Materials Chemistry, 20, 5797–5809.CrossRefGoogle Scholar
  118. 118.
    Diwan, B. D. & Murugan, S. (2013). Role of size on effective band gap in silicon nano-solid. Proceedings of ICANMEET.Google Scholar
  119. 119.
    Campisi, S., Schiavoni, M., Chan-Thaw, C. E., & Villa, A. (2016). Untangling the role of the capping agent in nanocatalysis: Recent advances and perspectives. Catalysts, 6(12), 185–206.CrossRefGoogle Scholar
  120. 120.
    Vempati, S., Ertas, Y., & Uyar, T. (2013). Sensitive surface states and their passivation mechanism in CdS quantum dots. The Journal of Physical Chemistry C, 117(41), 21609–21618.CrossRefGoogle Scholar
  121. 121.
    Schoenhalz, A. L., Arantes, J. T., Fazzio, A., & Dalpian, G. M. (2010). Surface and quantum confinement effects in ZnO nanocrystals. The Journal of Physical Chemistry C, 114(43), 18293–18297.CrossRefGoogle Scholar
  122. 122.
    Rowland, C. E., Brown, C. W., III, Delehanty, J. B., & Medintz, I. L. (2016). Nanomaterial-based sensors for the detection of biological threat agents. Materials Today, 19(8), 464–477.CrossRefGoogle Scholar
  123. 123.
    Thanh, N. T. K., Maclean, N., & Mahiddine, S. (2014). Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, 114, 7610–7630.CrossRefGoogle Scholar
  124. 124.
    Rossmanith, R., Weiss, C. K., Geserick, J., Hüsing, N., Hörmann, U., Kaiser, U., & Landfester, K. (2008). Porous anatase nanoparticles with high specific surface area prepared by miniemulsion technique. Chemistry of Materials, 20(18), 5768–5780.CrossRefGoogle Scholar
  125. 125.
    Vogel, N., Fischer, J., Mohammadi, R., Retsch, M., Butt, H.-J., Landfester, K., Weiss, C. K., & Kreiter, M. (2011). Plasmon hybridization in stacked double crescents arrays fabricated by colloidal lithography. Nano Letters, 11(2), 446–454.CrossRefGoogle Scholar
  126. 126.
    Knowles, K. E., Frederick, M. T., Tice, D. B., Morris-Cohen, A. J., & Weiss, E. A. (2011). Colloidal quantum dots: Think outside the (particle-in-a-)box. The Journal of Physical Chemistry Letters, 3(1), 18–26.CrossRefGoogle Scholar
  127. 127.
    Ko, Y., Baek, H., Kim, Y., Yoon, M., & Cho, J. (2013). Hydrophobic nanoparticle-based nanocomposite films using in situ ligand exchange layer-by-layer assembly and their nonvolatile memory applications. ACS Nano, 7(1), 143–153.CrossRefGoogle Scholar
  128. 128.
    Balocco, C., Song, A. M., & Missous, M. (2004). Room-temperature operations of memory devices based on self-assembled InAs quantum dot structures. Applied Physics Letters, 85(24), 5911–5913.CrossRefGoogle Scholar
  129. 129.
    Geller, M., Marent, A., Nowozin, T., Bimberg, D., & Akçay, N. (2008). A write time of 6ns for quantum dot–based memory structures. Applied Physics Letters, 92(9), 092108.CrossRefGoogle Scholar
  130. 130.
    Lee, J.-S., Kim, Y.-M., Kwon, J.-H., Shin, H., Sohn, B.-H., & Lee, J. (2009). Tunable memory characteristics of nanostructured, nonvolatile charge trap memory devices based on a binary mixture of metal nanoparticles as a charge trapping layer. Advanced Materials, 21(2), 178–183.CrossRefGoogle Scholar
  131. 131.
    Jung, S. M., Kim, H.-J., Kim, B.-J., Kim, Y.-S., Yoon, T.-S., & Lee, H. H. (2010). Electrical charging of Au nanoparticles embedded by streptavidin-biotin biomolecular binding in organic memory device. Applied Physics Letters, 97(15), 153302.CrossRefGoogle Scholar
  132. 132.
    Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbe, E. F., & Chan, K. (1996). A silicon nanocrystals based memory. Applied Physics Letters, 68, 1377–1379.CrossRefGoogle Scholar
  133. 133.
    Takahashi, N., Ishikuro, H., & Hiramoto, T. (2000). Control of Coulomb blockade oscillations in silicon single electron transistors using silicon nanocrystal floating gates. Applied Physics Letters, 76(2), 209–211.CrossRefGoogle Scholar
  134. 134.
    Zhang, T., Guerin, D., Alibart, F., Vuillaume, D., Lmimouni, K., Lenfant, S., Yassin, A., Ocafrain, M., Blanchard, P., & Roncali, J. (2017). Negative differential resistance, memory, and reconfigurable logic functions based on monolayer devices derived from gold nanoparticles functionalized with electropolymerizable TEDOT units. The Journal of Physical Chemistry C, 121, 10131–10139.CrossRefGoogle Scholar
  135. 135.
    Ouyang, J., & Yang, Y. (2010). Polymer: Metal nanoparticle devices with electrode-sensitive bipolar resistive switchings and their application as nonvolatile memory devices. Applied Physics Letters, 96, 063506.CrossRefGoogle Scholar
  136. 136.
    Haiwei, D., Wan, T., Qu, B., Cao, F., Lin, Q., Chen, N., Lin, X., & Chu, D. (2017). Engineering silver nanowire networks: From transparent electrodes to resistive switching devices. ACS Applied Materials & Interfaces, 9, 20762–20770.CrossRefGoogle Scholar
  137. 137.
    White, S. I., Vora, P. M., Kikkawa, J. M., & Winey, K. I. (2010). Resistive switching in bulk silver nanowire-polystyrene composites. Advanced Functional Materials, 21, 233–240.CrossRefGoogle Scholar
  138. 138.
    Padma, N., Betty, C. A., Samanta, S., & Nigam, A. (2017). Tunable switching characteristics of low operating voltage organic bistable memory devices based on gold nanoparticles and copper phthalocyanine thin films. The Journal of Physical Chemistry C, 121, 5768–5778.CrossRefGoogle Scholar
  139. 139.
    Hwang, B., & Lee, J.-S. (2018). Recent advances in memory devices with hybrid materials. Advanced Electronic Materials, 5, 1800519.CrossRefGoogle Scholar
  140. 140.
    Bozano, L. D., Kean, B. W., Beinhoff, M., Center, K. R., Rice, P. M., & Scott, J. C. (2005). Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles. Advanced Functional Materials, 15, 1933–1939.CrossRefGoogle Scholar
  141. 141.
    Sawa, A. (2008). Resistive switching in transition metal oxides. Materials Today, 11, 28–39.CrossRefGoogle Scholar
  142. 142.
    Liu, X. J., Li, X. M., Yu, W. D., Wang, Q., Yang, R., Cao, X., & Chen, L. D. (2009). Bipolar resistance switching property of Al-Ag/La0.3Ca0.7MnO3/Pt sandwitches. Journal of Ceramic Society of Japan, 117(6), 732.CrossRefGoogle Scholar
  143. 143.
    Fujimoto, M., Koyama, H., Kobayashi, S., Tamai, Y., Awaya, N., Nishi, Y., & Suzuki, T. (2005). Resistivity and resistive switching properties of Pr 0.7 Ca 0.3 MnO3 thin films. Journal of Applied Physics, 97, 10H709.CrossRefGoogle Scholar
  144. 144.
    Liu, C.-Y., & Tseng, T.-Y. (2007). Resistance switching properties of sol–gel derived SrZrO3 based memory thin films. Journal of Physics D: Applied Physics, 40, 2157.CrossRefGoogle Scholar
  145. 145.
    Seo, S., Lee, M. J., Seo, D. H., Jeoung, E. J., Suh, D.-S., Joung, Y. S., & Yoo, I. K. (2004). Reproducible resistance switching in polycrystalline NiO films. Applied Physics Letters, 85, 5655–5657.CrossRefGoogle Scholar
  146. 146.
    Lee, M.-J., Ahn, S.-E., Lee, C. B., Kim, C.-J., Jeon, S., Chung, U.-I., Yoo, I.-K., Park, G.-S., Han, S., Hwang, I. R., & Park, B.-H. (2011). A simple device unit consisting of All NiO storage and switch elements for multilevel terabit nonvolatile random access memory. ACS Applied Materials & Interfaces, 3, 4475–4479.CrossRefGoogle Scholar
  147. 147.
    He, L., Liao, Z.-M., Wu, H.-C., Tian, X.-X., Xu, D.-S., Cross, G. L. W., Duesberg, G. S., Shvets, I. V., & Yu, D.-P. (2011). Memory and threshold resistance switching in Ni/NiO core–shell nanowires. Nano Letters, 11, 4601–4606.CrossRefGoogle Scholar
  148. 148.
    Yang, Y., Zhang, X., Gao, M., Zeng, F., Zhou, W., Xie, S., & Pan, F. (2011). Nonvolatile resistive switching in single crystalline ZnO nanowires. Nanoscale, 3, 1917.CrossRefGoogle Scholar
  149. 149.
    Raffone, F., Risplendi, F., & Cicero, G. (2016). A new theoretical insight into ZnO NWs memristive behavior. Nano Letters, 16, 2543–2547.CrossRefGoogle Scholar
  150. 150.
    Porro, S., Risplendi, F., Cicero, G., Bejtka, K., Milano, G., Rivolo, P., Jasmin, A., Chiolerio, A., Pirriab, C. F., & Ricciardi, C. (2017). Multiple resistive switching in core–shell ZnO nanowires exhibiting tunable surface states. Journal of Materials Chemistry, C5, 10517–10523.Google Scholar
  151. 151.
    Wang, J., Sun, B., Gao, F., & Greenham, N. C. (2010). Memristive devices based on solution-processed ZnO nanocrystals. Physica Status Solidi (a), 207, 484–487.CrossRefGoogle Scholar
  152. 152.
    Rosa, J., Kiazadeh, A., Santos, L., Deuermeier, J., Martins, R., Gomes, H. L., & Fortunato, E. (2017). Memristors Using Solution-Based IGZO Nanoparticles. ACS Omega, 2, 8366–8372.CrossRefGoogle Scholar
  153. 153.
    Qi, J., Olmedo, M., Ren, J., Zhan, N., Zhao, J., Zheng, J.-G., & Liu, J. (2012). Resistive switching in single epitaxial ZnO nanoislands. ACS Nano, 6, 1051–1058.CrossRefGoogle Scholar
  154. 154.
    Rehman, S., Hur, J.-H., & Kim, D.-k. (2018). Resistive switching in solution-processed copper oxide (CuxO) by stoichiometry tuning. The Journal of Physical Chemistry C, 122, 11076–11085.CrossRefGoogle Scholar
  155. 155.
    Pawara, P. S., Tikkea, R. S., Patila, V. B., Mullania, N. B., Waifalkarb, P. P., Khotc, K. V., Telib, A. M., Sheikha, A. D., & Dongale, T. D. (2017). A low-cost copper oxide thin film memristive device based on successive ionic layer adsorption and reaction method. Materials Science in Semiconductor Processing, 71, 102–108.CrossRefGoogle Scholar
  156. 156.
    Khot, A. C., Desai, N. D., Khot, K. V., Salunkhe, M. M., Chougule, M. A., Bhave, T. M., Kamat, R. K., Musselman, K. P., & Dongale, T. D. (2018). Bipolar resistive switching and memristive properties of hydrothermally synthesized TiO2 nanorod array: Effect of growth temperature. Materials & Design, 151, 37–47.CrossRefGoogle Scholar
  157. 157.
    Duraisamy, N., Muhammad, N. M., Kim, H.-C., Jo, J.-D., & Choi, K.-H. (2012). Fabrication of TiO2 thin film memristor device using electrohydrodynamic inkjet printing. Thin Solid Films, 520, 5070–5074.CrossRefGoogle Scholar
  158. 158.
    Qingjiang, L., Khiat, A., Salaoru, I., Papavassiliou, C., Hui, X., & Prodromakis, T. (2014). Memory Impedance in TiO2 based metal-insulator-metal devices. Scientific Reports, 4, 4522.CrossRefGoogle Scholar
  159. 159.
    Manning, H. G., Biswas, S., Holmes, J. D., & Boland, J. J. (2017). Nonpolar resistive switching in Ag@TiO2 core–shell nanowires. ACS Applied Materials & Interfaces, 9, 38959–38966.CrossRefGoogle Scholar
  160. 160.
    Qian, K., Cai, G., Nguyen, V. C., Chen, T., & Lee, P. S. (2016). Direct observation of conducting filaments in tungsten oxide based transparent resistive switching memory. ACS Applied Materials & Interfaces, 8, 27885–27891.CrossRefGoogle Scholar
  161. 161.
    Hubbard, W. A., Kerelsky, A., Jasmin, G., White, E. R., Lodico, J., Mecklenburg, M., & Regan, B. C. (2015). Nanofilament formation and regeneration during Cu/Al2O3 resistive memory switching. Nano Letters, 15, 3983.CrossRefGoogle Scholar
  162. 162.
    Sharma, B., & Rabinal, M. K. (2016). A simple dip coat patterning of aluminum oxide to constitute a bistable memristor. Materials Research Express, 3, 126302.CrossRefGoogle Scholar
  163. 163.
    Stathopoulos, S., Khiat, A., Trapatseli, M., Cortese, S., Serb, A., Valov, I., & Prodromakis, T. (2017). Multibit memory operation of metal-oxide bi-layer memristors. Scientific Reports, 7, 17532.CrossRefGoogle Scholar
  164. 164.
    Rahaman, S. Z., Maikap, S., Tien, T.-C., Lee, H.-Y., Chen, W.-S., Chen, F. T., Kao, M.-J., & Tsai, M.-J. (2012). Excellent resistive memory characteristics and switching mechanism using Ti nanolayer at Cu/TaOX interface. Nanoscale Research Letters, 7, 345.CrossRefGoogle Scholar
  165. 165.
    Dearnaley, G., Stoneham, A. M., & Morgan, D. V. (1970). Electrical phenomena in amorphous oxide films. Reports on Progress in Physics, 33, 1129.CrossRefGoogle Scholar
  166. 166.
    Mardare, A. I., Mardare, C. C., Kollender, J. P., Huber, S., & Hassel, A. W. (2018). Basic properties mapping of anodic oxides in the hafnium–niobium–tantalum ternary system. Science and Technology of Advanced Materials, 19, 554.CrossRefGoogle Scholar
  167. 167.
    Nandakumar, S. R., Minvielle, M., Nagar, S., Dubourdieu, C., & Rajendran, B. (2016). A 250 mV Cu/SiO2/W memristor with half-integer quantum conductance states. Nano Letters, 16, 1602–1608.CrossRefGoogle Scholar
  168. 168.
    Yoon, C., Lee, J. H., Lee, S., Jeon, J. H., Jang, J. T., Kim, D. H., Kim, Y. H., & Park, B. H. (2017). Synaptic plasticity selectively activated by polarization-dependent energy-efficient ion migration in an ultrathin ferroelectric tunnel junction. ACS Nano Letters, 17, 1949–1955.CrossRefGoogle Scholar
  169. 169.
    Hwang, C. S. (2015). Prospective of semiconductor memory devices: From memory system to materials. Advanced Electronic Materials, 1(6).Google Scholar
  170. 170.
    Onyia, A. I., Ikeri, H. I., & Nwobodo, A. N. (2008). Theoretical study of the quantum confinement Effects on quantum dots using particle in a box model. Journal of Physical Chemistry C, 112, 11290–11294.CrossRefGoogle Scholar
  171. 171.
    Zhuge, F., Li, K., Bing, F., Zhang, H., Li, J., Chen, H., Liang, L., Gao, J., Cao, H., Liu, Z., & Luo, H. (2015). Mechanism for resistive switching in chalcogenide-based electrochemical metallization memory cells. AIP Advances, 5, 057125.CrossRefGoogle Scholar
  172. 172.
    Zhang, H., Zhang, Y., Yu, Y., Song, X., Zhang, H., Cao, M., Che, Y., Dai, H., Yang, J., & Yao, J. (2017). Ambipolar quantum-dot-based low-voltage nonvolatile memory with double floating Gates. ACS Photonics, 4(9), 2220–2227.CrossRefGoogle Scholar
  173. 173.
    Cheng, P., Sun, K., & Hu, Y. H. (2016). Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets. ACS Nano Letters, 16, 572–576.CrossRefGoogle Scholar
  174. 174.
    Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J., & Hersam, M. C. (2014). Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 8(2), 1102–1120.CrossRefGoogle Scholar
  175. 175.
    Zhang, P., Xu, B., Gao, C., Chen, G., & Gao, M. (2016). Facile synthesis of Co9Se8 quantum dots as charge traps for flexible organic resistive switching memory device. ACS Applied Materials & Interfaces, 8(44), 30336–30343.CrossRefGoogle Scholar
  176. 176.
    Lutz, C., Hasegawa, T., & Chikyow, T. (2016). Ag2S atomic switch-based ‘tug of war’ for decision making. Nanoscale, 8(29), 14031–14036.CrossRefGoogle Scholar
  177. 177.
    Gubicza, A., Csontos, M., Halbritterab, A., & Mihályab, G. (2015). Non-exponential resistive switching in Ag2S memristors: a key to nanometer-scale non-volatile memory devices. Nanoscale, 7(10), 4394–4399.CrossRefGoogle Scholar
  178. 178.
    Han, S.-T., Zhou, Y., Zhou, L., Yan, Y., Huang, L.-B., Wuab, W., & Roy, V. A. L. (2015). cdse/zns core–shell quantum dots charge trapping layer for flexible photonic memory. Journal of Materials Chemistry C, 3(13), 3173–3180.CrossRefGoogle Scholar
  179. 179.
    Kilina, S. V., Kilin, D. S., Prezhdo, V. V., & Prezhdo, O. V. (2011). Theoretical study of electron–phonon relaxation in PbSe and CdSe quantum dots: Evidence for phonon memory. The Journal of Physical Chemistry C, 115(44), 21641–21651.CrossRefGoogle Scholar
  180. 180.
    Yun, D. Y., Song, W. S., Kim, T. W., Kim, S. W., & Kim, S. W. (2012). Electrical stabilities and carrier transport mechanisms of flexible organic bistable devices based on CdSe-InP core-shellnanoparticle/polystyrene nanocomposites. Applied Physics Letters, 101(10), 103305.CrossRefGoogle Scholar
  181. 181.
    Kim, D. H., Wu, C., Park, D. H., Kim, W. K., Seo, H. W., Kim, S. W., & Kim, T. W. (2018). Flexible memristive devices based on InP/ZnSe/ZnS core-multishell quantum dot nanocomposites. ACS Applied Materials & Interfaces, 10(17), 14843–14849.CrossRefGoogle Scholar
  182. 182.
    Mohanta, K., Rivas, J., & Pai, R. K. (2012). Reverse switching phenomena in hybrid organic–inorganic thin film composite material. The Journal of Physical Chemistry C, 117(1), 124–130.CrossRefGoogle Scholar
  183. 183.
    Ghosh, B., Sahu, S., & Pal, A. J. (2008). Core-shell nanoparticles: An approach to enhance electrical bistability. The Journal of Physical Chemistry C, 112, 11290–11294.CrossRefGoogle Scholar
  184. 184.
    Hui, F., Grustan-Gutierrez, E., Long, S., Liu, Q., Ott, A. K., Ferrari, A. C., & Lanza, M. (2017). Graphene and related materials for resistive random access memories. Advanced Electronic Materials, 3, 1600195.CrossRefGoogle Scholar
  185. 185.
    Park, M., Park, S., & Yoo, K.-H. (2016). Multilevel nonvolatile memristive and memcapacitive switching in stacked graphene sheets. ACS Applied Materials & Interfaces, 8, 14046–14052.CrossRefGoogle Scholar
  186. 186.
    Ali, J., Siddiqui, G.-u.-d., Yang, Y. J., Lee, K. T., Umb, K., & Choi, K. H. (2016). Direct synthesis of graphene quantum dots from multilayer graphene flakes through grinding assisted co-solvent ultrasonication for all-printed resistive switching arrays. RSC Advances, 6, 5068–5078.CrossRefGoogle Scholar
  187. 187.
    Jacob, M. V., Rawat, R. S., Ouyang, B., Bazaka, K., Kumar, D. S., Taguchi, D., Iwamoto, M., Neupane, R., & Varghese, O. K. (2015). Catalyst-free plasma enhanced growth of graphene from sustainable sources. Nano Letters, 15, 5702–5708.CrossRefGoogle Scholar
  188. 188.
    Kim, H.-J., Jung, S. M., Kim, Y.-H., Kim, B.-J., Ha, S., Kim, Y.-S., Yoon, T.-S., & Lee, H. H. (2011). Characterization of gold nanoparticle pentacene memory device with polymer dielectric layer. Thin Solid Films, 519, 6140–6143.CrossRefGoogle Scholar
  189. 189.
    Wang, C., He, W., Tong, Y., Zhang, Y., Huang, K., Song, L., Zhong, S., Ganeshkumar, R., & Zhao, R. (2017). Memristive devices with highly repeatable analog states boosted by graphene quantum dots. Small, 13, 1603435.CrossRefGoogle Scholar
  190. 190.
    Kim, K. L., Lee, W., Hwang, S. K., Joo, S. H., Cho, S. M., Song, G., Cho, S. H., Jeong, B., Hwang, I., Ahn, J.-H., Yu, Y.-J., Shin, T. J., Kwak, S. K., Kang, S. J., & Park, C. (2015). Epitaxial growth of thin ferroelectric polymer films on graphene layer for fully transparent and flexible nonvolatile memory. Nano Letters, 16, 334–340.CrossRefGoogle Scholar
  191. 191.
    Kim, Y. H., Lee, E. Y., Lee, H. H., & Seo, T. S. (2017). Characteristics of reduced graphene oxide quantum dots for a flexible memory thin film transistor. ACS Applied Materials & Interfaces, 9, 16375–16380.CrossRefGoogle Scholar
  192. 192.
    Yan, X., Zhang, L., Yang, Y., Zhou, Z., Zhao, J., Zhang, Y., Liud, Q., & Chen, J. (2017). Highly improved performance in Zr0.5Hf0.5O2 films inserted with graphene oxide quantum dots layer for resistive switching non-volatile memory. Journal of Materials Chemistry C, 5, 11046.CrossRefGoogle Scholar
  193. 193.
    Pósa, L., Abbassi, E. M., Makk, P., Sánta, B., Nef, C., Csontos, M., Calame, M., & Halbritter, A. (2017). Multiple physical time scales and dead time rule in few-nanometers sized graphene–SiOx-graphene memristors. Nano Letters, 17, 6783–6789.CrossRefGoogle Scholar
  194. 194.
    Qi, M., Liang, B., Xu, H., Wang, Z., Kang, Z., Zhao, X., Liu, W., Jiangang, M., & Liua, Y. (2018). Oxidized carbon quantum dot–graphene oxide nanocomposites for improving data retention of resistive switching memory. Journal of Materials Chemistry C, 6, 2026–2033.CrossRefGoogle Scholar
  195. 195.
    Fan, F., Zhang, B., Cao, Y., Yang, X., Gu, J., & Chen, Y. (2017). Conjugated polymer covalently modified graphene oxide quantum dots for ternary electronic memory devices. Nanoscale, 9, 10610–10618.CrossRefGoogle Scholar
  196. 196.
    Che, Y., Zhang, Y., Cao, X., Song, X., Cao, M., Dai, H., Yang, J., Zhangab, G., & Yao, J. (2016). Low operating voltage ambipolar graphene oxide-floating-gate memory devices based on quantum dots. Journal of Materials Chemistry C, 4, 1420–1424.CrossRefGoogle Scholar
  197. 197.
    Wu, C., Li, F., Zhang, Y., Guo, T., & Chen, T. (2011). Highly reproducible memory effect of organic multilevel resistive-switch device utilizing graphene oxide sheets/polyimide hybrid nanocomposite. Applied Physics Letters, 99, 042108.CrossRefGoogle Scholar
  198. 198.
    Pan, X., & Skafidas, E. (2016). Resonant tunneling based graphene quantum dot memristors. Nanoscale, 8, 20074–20079.CrossRefGoogle Scholar
  199. 199.
    Zhuge, F., Hu, B.-L., He, C., Li, R.-W., Zhou, X., & Liu, Z. (2011). Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon, 49, 3796–3802.CrossRefGoogle Scholar
  200. 200.
    Jeong, H. Y., Kim, J. Y., Kim, J. W., Hwang, J. O., Kim, J. E., Lee, J. Y., Yoon, T. H., Cho, B. J., Kim, S. O., Ruoff, R. S., & Choi, S. Y. (2010). Graphene oxide thin films for flexible nonvolatile memory applications. Nano Letters, 10, 4381–4386.CrossRefGoogle Scholar
  201. 201.
    Hwang, S. K., Lee, J. M., Kim, S., Park, J. S., Park, H. I., Ahn, C. W., Lee, K. J., Lee, T., & Kim, S. O. (2012). Flexible multilevel resistive memory with controlled charge trap B- and N-doped carbon nanotubes. Nano Letters, 12, 2217–2221.CrossRefGoogle Scholar
  202. 202.
    Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402, 276–279.CrossRefGoogle Scholar
  203. 203.
    Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2011). Metal–organic framework materials as chemical sensors. Chemical Reviews, 112, 1105–1125.CrossRefGoogle Scholar
  204. 204.
    Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J., & Kim, K. (2000). A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature, 404, 982–986.CrossRefGoogle Scholar
  205. 205.
    Huang, R., Cai, Y., Liu, Y., Bai, W., Kuang, Y., & Wang, Y. (2014). Resistive switching in organic memory devices for flexible applications. IEEE, 838.Google Scholar
  206. 206.
    Gao, S., Yi, X., Shang, J., Liu, G., & Li, R.-W. (2019). Organic and hybrid resistive switching materials and devices. Chemical Society Reviews, 48, 1531. Scholar
  207. 207.
    Qia, Y., Suna, B., Fuc, G., Lib, T., Zhua, S., Liang, Z., Maoa, S., Kanb, X., Leib, M., & Chen, Y. (2019). A nonvolatile organic resistive switching memory based on lotus leaves. Chemical Physics, 516, 168–174.CrossRefGoogle Scholar
  208. 208.
    Biswas, B., Chowdhury, A., Sanyal, M. K., Majumder, M., & Mallik, B. (2013). Electric field induced tunable bistable conductance switching and the memory effect of thiol capped CdS quantum dots embedded in poly(methyl methacrylate) thin films. Journal of Materials Chemistry C, 1, 1211–1222.CrossRefGoogle Scholar
  209. 209.
    Yoon, S. M., Warren, S. C., & Grzybowski, B. A. (2014). Storage of Electrical Information in Metal-Organic-Framework Memristors. Angewandte Chemie, 126, 4526–4530.CrossRefGoogle Scholar
  210. 210.
    Verbakel, F., Meskers, S. C. J., de Leeuw, D. M., & Janssen, R. A. J. (2008). Resistive switching in organic memories with a spin-coated metal oxide nanoparticle layer. The Journal of Physical Chemistry C, 112, 5254–5257.CrossRefGoogle Scholar
  211. 211.
    Lu, H., Chen, Y., Chang, Q., Cheng, S., Ding, Y., Chen, J., Xiu, F., Wang, X., Ban, C., Liu, Z., Liu, J., & Huang, W. (2018). Polymer–carbon dot hybrid structure for a self-rectifying memory device by energy level offset and doping. RSC Advances, 8, 13917–13920.CrossRefGoogle Scholar
  212. 212.
    Pham, N. K., Vu, N. H., Van Pham, V., Ta, H. K. T., Cao, T. M., Thoaid, N., & Tran, V. C. (2018). Comprehensive resistive switching behavior of hybrid polyvinyl alcohol and TiO2 nanotube nanocomposites identified by combining experimental and density functional theory studies. Journal of Materials Chemistry C, 6, 1971–1979.CrossRefGoogle Scholar
  213. 213.
    Cheong, S., Kim, Y., Kwon, T., Kim, B. J., & Cho, J. (2013). Inorganic nanoparticle multilayers using photo-crosslinking layer-by-layer assembly and their applications in nonvolatile memory devices. Nanoscale, 5, 12356.CrossRefGoogle Scholar
  214. 214.
    Meng, L., Lan, M., Liang, G., Xie, L., Wang, H., Ge, J., Liu, W., Wang, Y., & Wang, P. (2015). Nonvolatile memory devices based on carbon nano-dot doped poly(vinyl alcohol) composites with low operation voltage and high ON/OFF ratio. RSC Advances, 5, 26886–26890.CrossRefGoogle Scholar
  215. 215.
    Jeong, Y. J., Yun, D. J., Noh, S. H., Park, C. E., & Jang, J. (2018). Surface modification of CdSe quantum-dot floating gates for advancing light-erasable organic field-effect transistor memories. ACS Nano, 12, 7701–7709.CrossRefGoogle Scholar
  216. 216.
    Li, G. L., Liu, G., Li, M., Wan, D., Neoh, K. G., & Kang, E. T. (2010). Organo- and water-dispersible graphene oxide−polymer nanosheets for organic electronic memory and gold nanocomposites. The Journal of Physical Chemistry C, 114, 12742–12748.CrossRefGoogle Scholar
  217. 217.
    Alibart, F., Pleutin, S., Bichler, O., Gamrat, C., Serrano-Gotarredona, T., Linares-Barranco, B., & Vuillaume, D. (2011). A memristive nanoparticle/organic hybrid synapstor for neuroinspired computing. Advanced Functional Materials, 22, 609–616.CrossRefGoogle Scholar
  218. 218.
    Shao, Y., Fang, Y., Li, T., Wang, Q., Dong, Q., Deng, Y., Yuan, Y., Wei, H., Wang, M., Gruverman, A., Shielda, J., & Huang, J. (2016). Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy & Environmental Science, 9, 1752–1759.CrossRefGoogle Scholar
  219. 219.
    Siddiqui, G. U., Rehman, M. M., Yang, Y.-J., & Choi, K. H. (2017). A two-dimensional hexagonal boron nitride/polymer nanocomposite for flexible resistive switching devices. Journal of Materials Chemistry C, 5, 862–871.CrossRefGoogle Scholar
  220. 220.
    Yan, K., Chen, B., Hu, H., Chen, S., Xue, G., Xiao, X., Zhou, J., & Zou, D. (2016). First fiber-shaped non-volatile memory device based on hybrid organic-inorganic perovskite. Advanced Electronic Materials, 2, 1600160.CrossRefGoogle Scholar
  221. 221.
    Hota, M. K., Bera, M. K., Kundu, B., Kundu, S. C., & Maiti, C. K. (2012). A natural silk fibroin protein-based transparent bio-memristor. Advanced Functional Materials, 22(21), 4493–4499.CrossRefGoogle Scholar
  222. 222.
    Lv, Z., Zhou, Y., Han, S.-T., & Roy, V. A. L. (2018). From biomaterial-based data storage to bio-inspired artificial synapse. Materials today, 21, 537–552.CrossRefGoogle Scholar
  223. 223.
    Murgunde, B. K., Rabinal, M. K., & Kalasad, M. N. (2018). Biologically active nanocomposite of DNA-PbS nanoparticles: A new material for non-volatile memory devices. Applied Surface Science, 427, 344–353.CrossRefGoogle Scholar
  224. 224.
    Murgunde, B. K., & Rabinal, M. K. (2017). Solution processed bilayer junction of silk fibroin and semiconductor quantum dots as multilevel memristor devices. Organic Electronics, 48, 276–284.CrossRefGoogle Scholar
  225. 225.
    Chu, H.-L., Chiu, S.-C., Sung, C.-F., Tseng, W., Chang, Y.-C., Jian, W.-B., Chen, Y.-C., Yuan, C.-J., Li, H.-Y., Gu, F. X., Di Ventra, M., & Chang, C.-C. (2014). Programmable redox state of the nickel ion chain in DNA. Nano Letters, 14, 1026–1031.CrossRefGoogle Scholar
  226. 226.
    Lee, T., Yagati, A. K., Pi, F., Sharma, A., Choi, J.-W., & Guo, P. (2015). Construction of RNA–quantum dot chimera for nanoscale resistive biomemory application. ACS Nano, 9, 6675–6682.CrossRefGoogle Scholar
  227. 227.
    Xing, Y., Shi, C., Zhao, J., Qiu, W., Lin, N., Wang, J., Yan, X. B., Yu, W. D., & Liu, X. Y. (2017). Mesoscopic-functionalization of silk fibroin with gold nanoclusters mediated by keratin and bioinspired silk synapse. Small, 13, 1702390.CrossRefGoogle Scholar
  228. 228.
    Portney, N. G., Martinez-Morales, A. A., & Ozkan, M. (2008). Nanoscale memory characterization of virus-templated semiconducting quantum dots. ACS Nano, 2, 191–196.CrossRefGoogle Scholar
  229. 229.
    Lim, Z. X., & Cheong, K. Y. (2015). Effects of drying temperature and ethanol concentration on bipolar switching characteristics of natural Aloe vera-based memory devices. Physical Chemistry Chemical Physics, 17, 26833–26853.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PhysicsKarnatak UniversityDharwadIndia
  2. 2.Energy Safety Research InstituteSwansea UniversitySwanseaUK
  3. 3.Department of PhysicsDavangere UniversityDavangereIndia

Personalised recommendations