Quantum Dot Materials Toward High-Speed and Ultrafast Laser Applications

Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 27)


Self-assembled In(Ga)As/GaAs quantum dots (QDs) have attracted much attention for both high-speed and ultrafast laser applications because of their fascinating optical and electronic properties. Here, we will review recent development of InAs/GaAs quantum dots and their applications to high-speed lasers and ultrafast lasers. The chapter includes two main sections, one is focusing on developing high-quality 1310 nm InAs/GaAs quantum dot structures and fabricating high-performance lasers including ultrashort cavity Fabry-Pérot (F-P) and distributed feedback (DFB) lasers. We will discuss effects of the modulation p-doping on optical properties of 1310 nm InAs/GaAs QDs and share our latest results on ultrashort cavity F-P and DFB lasers. The other is about the recent works on the development of 1550 nm InAs/GaAs quantum dot semiconductor saturable absorber mirrors (QD-SESAMs) and the realization of a high repetition rate diode-pumped solid-state and Q-switched Er-doped fiber laser mode-locked by the utilization of 1550 nm QD-SESAM.


  1. 1.
    Bimberg, D., Kirstaedter, N., Ledentsov, N. N., Alferov, Z. I., Kop’ev, P. S., & Ustinov, V. M. (1997). InGaAs-GaAs quantum-dot lasers. IEEE Journal of Selected Topics in Quantum Electronics, 3, 196–205.CrossRefGoogle Scholar
  2. 2.
    Shchekin, O. B., & Deppe, D. G. (2002). 1.3 μm InAs quantum dot laser with To=161 K from 0 to 80 °C. Applied Physics Letters, 80, 3277–3279.CrossRefGoogle Scholar
  3. 3.
    Kim, J., & Chuang, S. L. (2006). Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers. IEEE Journal of Quantum Electronics, 42, 942–952.CrossRefGoogle Scholar
  4. 4.
    Capua, A., Rozenfeld, L., Mikhelashvili, V., Eisenstein, G., Kuntz, M., & Laeemmlin, M. (2007). Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser. Optics Express, 15, 5388–5393.CrossRefGoogle Scholar
  5. 5.
    Kami, O., Capua, A., Eisenstein, G., Franke, D., Kreissl, J., Kuenzel, H., Arsenijević, D., Schmeckebier, H., Stubenrauch, M., Kleinert, M., Bimberg, D., Gilfert, C., & Reithmaier, J. P. (2013). Nonlinear pulse propagation in a quantum dot laser. Optics Express, 21, 5715–5736.CrossRefGoogle Scholar
  6. 6.
    Hantschmann, C., Vasil’ev, P. P., Chen, S., Liao, M., Seeds, A. J., Liu, H., Penty, R. V., & White, I. H. (2018). Gain switching of monolithic 1.3 μm InAs/GaAs quantum dot lasers on silicon. Journal of Lightwave Technology, 36, 3837–3842.CrossRefGoogle Scholar
  7. 7.
    Korenev, V. V., Savelyev, A. V., Zhukov, A. E., Omelchenko, A. V., & Maximov, M. V. (2014). The analytical approach to the multi-state lasing phenomenon in undoped and p-doped InAs/InGaAs semiconductor quantum dot lasers. Proceedings of SPIE, 9134, 913406.CrossRefGoogle Scholar
  8. 8.
    Liu, Q. L., Hou, C. C., Chen, H. M., Ning, J. Q., Li, Q. Z., Huang, Y. Q., Zhao, Z. Y., Wang, Z. G., Jin, P., & Zhang, Z. Y. (2018). Effects of modulation P-doping on thermal stability of InAs/GaAs quantum dot superluminescent diodes. Journal of Nanoscience and Nanotechnology, 6, 7536–7541.CrossRefGoogle Scholar
  9. 9.
    Chia, C. K., Chua, S. J., Wang, Y. J., Yong, A. M., & Chow, S. Y. (2007). Impurity free vacancy disordering of InAs/GaAs quantum dot and InAs/InGaAs dot-in-a-well structures. Thin Solid Films, 515, 3927–3931.CrossRefGoogle Scholar
  10. 10.
    Saha, J., Panda, D., Tongbram, B., Das, D., Chavan, V., & Chakrabarti, S. (2019). Higher performance optoelectronic devices with In0.21Al0.21Ga0.58As/In0.15Ga0.85As capping of III-V quantum dots. Journal of Luminescence, 210, 75–82.CrossRefGoogle Scholar
  11. 11.
    Liu, H. Y., Sellers, I. R., Badcock, I. R., Mowbray, D. J., & Skolnick, M. S. (2004). Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer. Applied Physics Letters, 85, 704–706.CrossRefGoogle Scholar
  12. 12.
    Mi, Z., Bhattacharya, P., & Fathpour, S. (2005). High-speed 1.3 μm tunnel injection quantum-dot lasers. Applied Physics Letters, 96, 153109.CrossRefGoogle Scholar
  13. 13.
    Yu, H. C., Wang, J. S., Su, Y. K., Chang, S. J., Lai, F. I., Chang, Y. H., Kuo, H. C., Sung, C. P., Yang, P. D., Lin, K. F., Wang, J. M., Chi, J. Y., Hsiao, R. S., & Mikhrin, S. (2006). 1.3-μm InAs-InGaAs quantum-dot vertical-cavity surface-emitting laser with fully doped DBRs grown by MBE. IEEE Photonics Technology Letters, 18, 418–420.CrossRefGoogle Scholar
  14. 14.
    Liu, C. Y., Yoon, S. F., Cao, Q., Tong, C. Z., & Li, H. F. (2007). Low transparency current density and high temperature operation from ten-layer p-doped 1.3 μm InAs/InGaAs/GaAs quantum dot lasers. Applied Physics Letters, 90, 041103.CrossRefGoogle Scholar
  15. 15.
    Tong, C., Xu, D., & Yoon, S. F. (2009). Carrier relaxation and modulation response of 1.3-μm InAs-GaAs quantum dot lasers. Journal of Lightwave Technology, 27, 5442–5450.CrossRefGoogle Scholar
  16. 16.
    Liu, S. W., Liu, R. Y., & Lin, H. C. (2017). Tailoring energy band alignment of vertically aligned InGaAs quantum dots capped with GaAs(Sb)/AlGaAsSb composite structure after thermal annealing treatment. ACS Photonics, 4, 242–250.CrossRefGoogle Scholar
  17. 17.
    Abdollahinia, A., Banyoudeh, S., Rippien, A., Schnabel, F., Eyal, O., Cestier, I., Kalifa, I., Mentovichm, E., Eisenstein, G., & Reithmaier, J. P. (2018). Temperature stability of static and dynamic properties of 1.55 μm quantum dot lasers. Optics Express, 26, 6056–6066.CrossRefGoogle Scholar
  18. 18.
    Dai, Y., Fan, J., Chen, Y., Lin, R., Lee, S., & Lin, H. (1997). Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses. Journal of Applied Physics, 82, 4489–4492.CrossRefGoogle Scholar
  19. 19.
    Cao, Q., Yoon, S., Liu, C., & Tong, C. (2008). Effects of rapid thermal annealing on optical properties of p-doped and undoped InAs/InGaAs dots-in-a-well structures. Journal of Applied Physics, 104, 033522.CrossRefGoogle Scholar
  20. 20.
    Liu, H. Y., Dai, Q. F., Wu, L. J., Lan, S., Trofimov, V., & Varentsova, S. (2012). Effects of p-type doping on the optical properties of InAs/GaAs quantum dots. Solid State Communications, 152, 435–439.CrossRefGoogle Scholar
  21. 21.
    Chaabani, W., Melliti, A., Maaref, M., Testelin, C., & Lemaitre, A. (2016). Rapid thermal annealing and modulation-doping effects on InAs/GaAs quantum dots photoluminescence dependence on excitation power. Physics B, 493, 53–57.CrossRefGoogle Scholar
  22. 22.
    Nakahara, K., Tsuchiya, T., Kitatani, T., Shinoda, K., Taniguchi, T., Kikawa, T., Aoki, M., & Mukaikubo, M. (2007). 40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers. IEEE Photonics Technology Letters, 19, 1436–1438.CrossRefGoogle Scholar
  23. 23.
    Zhang, C., Srinivasan, S., Tang, Y., Heck, M. J., Davenport, M. L., & Bowers, J. E. (2014). Low threshold and high speed short cavity distributed feedback hybrid silicon lasers. Optics Express, 22, 10202–10209.CrossRefGoogle Scholar
  24. 24.
    Jhang, Y. H., Mochida, R., Tanabe, K., Takemasa, K., Sugawara, M., Iwamoto, S., & Arakawa, Y. (2016). Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C. Optics Express, 24, 18428–18435.CrossRefGoogle Scholar
  25. 25.
    Banyoudeh, S., Abdollahinia, A., Eual, O., Schkovskyi, V., Eisenstein, G., & Reithmaier, J. P. (2016). Temperature-insensitive high-speed directly modulated 1.55 μm quantum dot lasers. IEEE Photonics Technology Letters, 28, 2451–2454.CrossRefGoogle Scholar
  26. 26.
    Arsenijević, D., Schliwa, A., Schmeckebier, H., Stubenrauch, M., Spiegelberg, M., Bimberg, D., Mikhelashvili, V., & Eisenstein, G. (2014). Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers. Applied Physics Letters, 104, 181101.CrossRefGoogle Scholar
  27. 27.
    Deppe, D. G., Shavritranuruk, K., Ozgur, G., Chen, H., & Freisem, S. (2009). Quantum dot laser diode with low threshold and low internal loss. Electronics Letters, 45, 54–55.CrossRefGoogle Scholar
  28. 28.
    Wu, J., Shao, D., Dorogan, V. G., Li, A. Z., Li, S., DeCuir, E. A., Manasreh, M. O., Wang, Z. M., Mazur, Y. I., & Salamo, G. J. (2010). Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy. Nano Letters, 10, 1512–1516.CrossRefGoogle Scholar
  29. 29.
    Zhang, Z., Hogg, R. A., Lv, X. Q., & Wang, Z. G. (2010). Self-assembled quantum-dot superluminescent light-emitting diodes. Advances in Optics and Photonics, 2, 201–228.CrossRefGoogle Scholar
  30. 30.
    Zhang, Z., Oehler, A. E. H., Resan, B., Kurmulis, S., Zhou, K. J., Wang, Q., Mangold, M., Suedmeyer, T., Keller, U., Weigarten, K. J., & Hogg, R. A. (2012). 1.55 μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser. Scientific Reports, 2, 477.CrossRefGoogle Scholar
  31. 31.
    Resan, B., Kurmulis, S., Zhang, Z., Oehler, A. E. H., Markovic, V., Mangold, M., Sudmeyer, T., Keller, U., Hogg, R. A., & Weigarten, K. J. (2016). 10 GHz pulse repetition rate Er:Yb:glass laser modelocked with quantum dot semiconductor saturable absorber mirror. Applied Optics, 55, 3776–3780.CrossRefGoogle Scholar
  32. 32.
    Oehler, A. E. H., Suedmeter, T., Weingarten, K. J., & Keller, U. (2008). 100 GHz passively mode-locked Er:Yb:glass laser at 1.5 μm with 1.6-ps pulses. Optics Express, 16, 21930–21935.CrossRefGoogle Scholar
  33. 33.
    Maas, D. J. H. C., Bellancourt, A. R., Hoffmann, M., Rudin, B., Barbarin, Y., Golling, M., Sudmeyer, T., & Keller, U. (2008). Growth parameter optimization for fast quantum dot SESAMs. Optics Express, 16, 18646–18656.CrossRefGoogle Scholar
  34. 34.
    White, S. E., & Cataluna, M. A. (2015). Unlocking spectral versatility from broadly-tunable quantum-dot lasers. Photonics, 2, 719–744.CrossRefGoogle Scholar
  35. 35.
    Gorodetsky, A., Yadav, A., Avrutin, E., Fedorova, K. A., & Rafailov, E. U. (2018). Photoelectric properties of InAs/GaAs quantum dot photoconductive antenna wafers. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1900105.CrossRefGoogle Scholar
  36. 36.
    Salhi, A., Alshaibani, S., Alaskar, Y., Albadri, A., Alyamani, A., & Missous, M. (2018). Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers. Applied Physics Letters, 113, 103101.CrossRefGoogle Scholar
  37. 37.
    Paranthoen, C., Bertru, N., Dehaese, O., Corre, A. L., Loualiche, S., & Lambert, B. (2001). Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm. Applied Physics Letters, 78, 1751–1753.CrossRefGoogle Scholar
  38. 38.
    Miyazawa, T., Takemoto, K., Sakuma, Y., Hirose, S., Usuki, T., Yokoyama, N., Takatsu, M., & Arakawa, Y. (2005). Single-photon generation in the 1.55-μm optical-fiber band from an InAs/InP quantum dot. Japanese Journal of Applied Physics, 44, 20–23.CrossRefGoogle Scholar
  39. 39.
    Zilkie, A. J., Meier, J., & Smith, P. W. E. (2006). InAs/InGaAsP quantum dot amplifier operating at 1.55 μm. Optics Express, 14, 11453–11459.CrossRefGoogle Scholar
  40. 40.
    Lelarge, F., Dagens, B., Renaudier, J., Brenot, R., Accard, A., Dijk, F. V., & Make, D. (2007). Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm. IEEE Journal of Selected Topics in Quantum Electronics, 13, 111–124.CrossRefGoogle Scholar
  41. 41.
    Rosales, R., Merghem, K., Martinez, A., Akrout, A., Tourrenc, J. P., Accard, A., Lelarge, F., & Ramdane, A. (2011). InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications. IEEE Journal of Selected Topics in Quantum Electronics, 17, 1292–1301.CrossRefGoogle Scholar
  42. 42.
    Mikhrin, V. S., Vasil’ev, A. P., & Semenova, E. S. (2006). InAs/InGaNAs/GaNAs QW and QD heterostructures emitting at 1.4-1.8 μm. Semiconductors, 40, 342–345.CrossRefGoogle Scholar
  43. 43.
    Seravalli, L., Frigeri, P., Trevisi, G., & Franchi, S. (2008). 1.59 μm room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates. Applied Physics Letters, 92, 213104.CrossRefGoogle Scholar
  44. 44.
    Ripalda, J. M., Granados, D., & Gonzalez, Y. (2005). Room temperature emission at 1.6 mu m from InGaAs quantum dots capped with GaAsSb. Applied Physics Letters, 87, 202108.CrossRefGoogle Scholar
  45. 45.
    Richter, M., Damilano, B., Massies, J., Duboz, J. Y., Wieck, A. D., et al. (2006). Progress in Semiconductor Materials V-Novel Materials and Electronic and Optoelectronic Applications, 891, 185–190.Google Scholar
  46. 46.
    Ledentsov, N. N., Kovsh, A. R., Zhukov, A. E., Maleev, N. A., Mikhrin, S. S., Vasil’ev, A. P., Semenova, E. S., Maximov, M. V., Shernyakov, Y. M., Kryzhanovskaya, N. V., Ustinov, V. M., & Bimberg, D. (2003). High performance quantum dot lasers on GaAs substrates operating in 1.5 μm range. Electronics Letters, 39, 1126–1128.CrossRefGoogle Scholar
  47. 47.
    Bakopoilos, P. (2007). Multi-wavelength laser source for dense wavelength division multiplexing networks. Proceedings of Optical Fiber Communications Conference paper OWJ2.Google Scholar
  48. 48.
    Bartels, A., Heinecke, D., & Diddams, S. A. (2009). 10-GHz self-referenced optical frequency comb. Science, 326, 681–682.CrossRefGoogle Scholar
  49. 49.
    Hillerkuss, D., Schmogrow, R., Schellinger, T., et al. (2011). 26 Tbits/s line-rate super-channel transmission utilizing alloptical fast Fourier transform processing. Nature Photonics, 5, 364–371.CrossRefGoogle Scholar
  50. 50.
    Li, Q., Wang, X., Chen, H. M., Huangm, Y., Hou, C., Wang, J., Zhang, R., Ning, J., Min, J., Zheng, C. C., & Zhang, Z. (2018). Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry−Perot and distributed-feedback laser diodes. ACS Photonics, 5, 1084–1093.CrossRefGoogle Scholar
  51. 51.
    Mazur, Y. I., Liang, B., Wang, Z. M., Tarasov, G., Guzun, D., & Salamo, G. (2007). Development of continuum states in photoluminescence of self-assembled InGaAs/GaAs quantum dots. Journal of Applied Physics, 101, 014301.CrossRefGoogle Scholar
  52. 52.
    Kumagai, N., Watanabe, K., Nakata, Y., & Arakawa, Y. (2007). Optical properties of p-type modulation-doped InAs quantum dot structures grown by molecular beam epitaxy. Journal of Crystal Growth, 301, 805–808.CrossRefGoogle Scholar
  53. 53.
    Berg, T. W., & Mørk, J. (2003). Quantum dot amplifiers with high output power and low noise. Applied Physics Letters, 82, 3083–3085.CrossRefGoogle Scholar
  54. 54.
    Harbord, E., Spencer, P., Clarke, E., & Murray, R. (2009). Radiative lifetimes in undoped and p-doped InAs/GaAs quantum dots. Physical Review B: Condensed Matter and Materials Physics, 80, 195312.CrossRefGoogle Scholar
  55. 55.
    Paul, S., Roy, J., & Basu, P. (1991). Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1−xAs. Journal of Applied Physics, 69, 827–829.CrossRefGoogle Scholar
  56. 56.
    Su, L., Liang, B., Wang, Y., Guo, Q., Li, X., Wang, S., Fu, G., Mazur, Y. I., Ware, M. E., & Salamo, G. J. (2016). The continuum state in photoluminescence of type-II In0.46Al0.54As/Al0.54Ga0.46As quantum dots. Applied Physics Letters, 109, 183103.CrossRefGoogle Scholar
  57. 57.
    Babinski, A., & Jasinski, J. (2002). Post-growth thermal treatment of self-assembled InAs/GaAs quantum dots. Thin Solid Films, 412, 84–88.CrossRefGoogle Scholar
  58. 58.
    Gunawan, O., Djie, H., & Ooi, B. (2005). Electronics states of interdiffused quantum dots. Physical Review B, 71, 205319.CrossRefGoogle Scholar
  59. 59.
    Zhao, H., Yoon, S., Ngo, C., Wang, R., Cao, Q., & Liu, C. (2011). Effects of annealing and p-doping on the two-state competition in 1.3 μm InAs/GaAs quantum-dot lasers. IEEE Transactions on Nanotechnology, 10, 1211–1213.CrossRefGoogle Scholar
  60. 60.
    Smowton, P. M., Sandall, I. C., Mowbray, D. J., Liu, H. Y., & Hopkinson, M. (2007). Temperature-dependent gain and threshold in p-doped quantum dot lasers. IEEE Journal of Selected Topics in Quantum Electronics, 13, 1261–1266.CrossRefGoogle Scholar
  61. 61.
    Gao, F., Luo, S., Ji, H., Liu, S. T., Xu, F., Lv, Z., Lu, D., Ji, C., & Yang, T. (2016). Ultrashort pulse and high power mode-locked laser with chirped InAs/InP quantum dot active layers. IEEE Photonics Technology Letters, 28, 1481–1484.CrossRefGoogle Scholar
  62. 62.
    Sopanen, M., Xin, H. P., & Tu, C. W. (2000). Self-assembled GaInNAs quantum dots for 1.3 and 1.55 μm emission on GaAs. Applied Physics Letters, 76, 994–996.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhouPeople’s Republic of China
  2. 2.Division of Natural and Applied SciencesDuke Kunshan UniversityKunshanPeople’s Republic of China

Personalised recommendations