Advertisement

Experimental Progress on Quantum Communication with Quantum Dot Based Devices

Chapter
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 27)

Abstract

Quantum communication is a key branch in the field of quantum information. Quantum dot devices have very promising applications in quantum communication due to the advantage in emitting single photon with good purity and high generation rate. In this chapter, a brief introduction of quantum communication, i.e., quantum key distribution, quantum teleportation, and atom–photon entanglement, is given. The experimental progresses in applying quantum dot devices in these directions are summarized. In each direction, a typical example is introduced in details to show clearly the main principles and technology involved in these experimental progresses.

Keywords

Quantum key distribution Quantum teleportation Spin–photon entanglement Quantum network Quantum dot-based devices 

References

  1. 1.
    Antonio, A., Bloch, I., Buhrman, H., et al. (2018). The quantum technologies roadmap: A European community view. New Journal of Physics, 20, 080201.CrossRefGoogle Scholar
  2. 2.
    Guo, G. C., & Ying, M. S. (2019). Preface to special topic on quantum computing. National Science Review, 6, 20.CrossRefGoogle Scholar
  3. 3.
    Raymer, M., & Monroe, C. (2019). The US national quantum initiative. Quantum Science Technology, 4, 020504.CrossRefGoogle Scholar
  4. 4.
    Yamamoto, Y., Sasaki, M., & Takesue, H. (2019). Quantum information science and technology in Japan. Quantum Science Technology, 4, 020502.CrossRefGoogle Scholar
  5. 5.
    Dowling, J., & Milburn, G. (2003). Quantum technology: The second quantum revolution. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361, 1655.CrossRefGoogle Scholar
  6. 6.
    Ladd, T., Jelezko, F., Laflamme, R., et al. (2010). Quantum computers. Nature, 464, 45.CrossRefGoogle Scholar
  7. 7.
    Shor, P. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 1484.Google Scholar
  8. 8.
    Deutsch, D., & Jozsa, R. (1992). Rapid solution of problems by quantum computation. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 439, 553–558.Google Scholar
  9. 9.
    Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Physical Review Letters, 78, 212–219.Google Scholar
  10. 10.
    Krenn, M., Malik, M., Scheidl, T., Ursin, R., & Zeilinger, A. (2016). Quantum communication with photons. In M. Al-Amri, M. El-Gomati, & M. Zubairy (Eds.), Optics in our time. Cham: Springer.Google Scholar
  11. 11.
    Gisin, N., & Thew, R. (2007). Quantum communication. Nature Photonics, 1, 165–171.CrossRefGoogle Scholar
  12. 12.
    Yuan, Z. S., Bao, X. H., Lu, C. Y., Zhang, J., Peng, C. Z., & Pan, J. W. (2010). Entangled photons and quantum communication. Physics Reports, 497(1).Google Scholar
  13. 13.
    Khan, I., Elser, D., Dirmeier, T., Marquardt, C., & Leuchs, G. (2017). Quantum communication with coherent states of light. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 375, 20160235.CrossRefGoogle Scholar
  14. 14.
    Kimble, H. J. (2008). The quantum internet. Nature, 453, 1023.CrossRefGoogle Scholar
  15. 15.
    Wehner, S., Elkouss, D., & Hanson, R. (2018). Quantum internet: A vision for the road ahead. Science, 362, 303.CrossRefGoogle Scholar
  16. 16.
    Pant, M., Krovi, H., Towsley, D., et al. (2019). Routing entanglement in the quantum internet. npj Quantum Information, 5, 25.CrossRefGoogle Scholar
  17. 17.
    Dür, W., Lamprecht, R., & Heusler, S. (2017). Towards a quantum internet. European Journal of Physics, 38, 043001.CrossRefGoogle Scholar
  18. 18.
    Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography. Reviews of Modern Physics, 74, 145.CrossRefGoogle Scholar
  19. 19.
    Bennett, C. H., & Brassard, G. (1984). Quantum cryptography: Public key distribution and coin tossing. Proceedings of IEEE International Conference on Computer Systems and Signal Process, 175, 179.Google Scholar
  20. 20.
    Bennett, C. H., Brassard, G., & Ekert, A. (1992). Quantum cryptography. Scientific American, 267, 50.CrossRefGoogle Scholar
  21. 21.
    Bennett, C. H. (1992). Quantum cryptography using any two nonorthogonal states. Physical Review Letters, 68, 3121.CrossRefGoogle Scholar
  22. 22.
    Biham, E., & Mor, T. (1997). Security of quantum cryptography against collective attacks. Physical Review Letters, 78, 2256.CrossRefGoogle Scholar
  23. 23.
    Townsend, P. (1997). Quantum cryptography on multiuser optical fiber networks. Nature (London), 385, 47.CrossRefGoogle Scholar
  24. 24.
    Bréguet, J., Muller, A., & Gisin, N. (1994). Quantum cryptography with polarized photons in optical fibers: Experimental and practical limits. Journal of Modern Optics, 41, 2405.CrossRefGoogle Scholar
  25. 25.
    Buttler, W. T., Hughes, R. J., Kwiat, P. G., et al. (1998). Practical free-space quantum key distribution over 1 km. Physical Review Letters, 81, 3283.CrossRefGoogle Scholar
  26. 26.
    Buttler, W. T., Hughes, R. J., Lamoreaux, S. K., et al. (2000). Daylight quantum key distribution over 1.6 km. Physical Review Letters, 84, 5652.CrossRefGoogle Scholar
  27. 27.
    Ekert, A. K. (1991). Quantum cryptography based on Bell’s theorem. Physical Review Letters, 67, 661.CrossRefGoogle Scholar
  28. 28.
    Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., & Zeilinger, A. (2000). Quantum cryptography with entangled photons. Physical Review Letters, 84, 4729–4732.CrossRefGoogle Scholar
  29. 29.
    Boaron, A., Boso, G., Rusca, D., et al. (2018). Secure quantum key distribution over 421 km of optical fiber. Physical Review Letters, 121, 190502.CrossRefGoogle Scholar
  30. 30.
    Bennett, C. H., Brassard, G., Crépeau, C., et al. (1993). Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70, 1895.Google Scholar
  31. 31.
    Bouwmeester, D., Pan, J. W., Mattle, K., et al. (1997). Experimental quantum teleportation. Nature, 390, 575.CrossRefGoogle Scholar
  32. 32.
    Ursin, R., Jennewein, T., Aspelmeyer, M., et al. (2004). Quantum teleportation across the Danube. Nature, 430, 849.CrossRefGoogle Scholar
  33. 33.
    Boschi, D., Branca, S., Martini, D., et al. (1998). Experimental realisation of teleporting an unknown pure quantum state via dual classical and Einstein–Podolski–Rosen channels. Physical Review Letters, 80, 1121–1125.CrossRefGoogle Scholar
  34. 34.
    Jin, X.-M., Ren, J. G., Yang, B., et al. (2010). Experimental freespace quantum teleportation. Nature Photonics, 4, 376.CrossRefGoogle Scholar
  35. 35.
    Kim, Y. H., Kulik, S. P., & Shih, Y. (2001). Quantum teleportation of a polarisation state with complete bell state measurement. Physical Review Letters, 86, 1370.CrossRefGoogle Scholar
  36. 36.
    Yin, J., Ren, J. G., & Lu, H. (2012). Quantum teleportation and entanglement distribution over 100kilometre freespace channels. Nature, 488, 185–188.CrossRefGoogle Scholar
  37. 37.
    Ma, X. S., Herbst, T., Scheidl, T., et al. (2012). Quantum teleportation over 143 kilometres using active feedforward. Nature, 489, 269.CrossRefGoogle Scholar
  38. 38.
    Marcikic, I., de Riedmatten, H., Tittel, W., et al. (2003). Long distance teleportation of qubits at telecommunication wavelengths. Nature, 421, 509.Google Scholar
  39. 39.
    Wang, X. L., Cai, X. D., Su, Z. E., et al. (2015). Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 518, 516.CrossRefGoogle Scholar
  40. 40.
    Furusawa, A., Sørensen, J. L., Braunstein, S. L., et al. (1998). Unconditional quantum teleportation. Science, 282, 706.CrossRefGoogle Scholar
  41. 41.
    Takei, N., Yonezawa, H., Aoki, T., et al. (2005). High fedelity teleportation beyond the nocloning limit and entanglement swapping for continuous variables. Physical Review Letters, 94, 220502.Google Scholar
  42. 42.
    Sherson, J. F., Krauter, H., Olsson, R. K., et al. (2006). Quantum teleportation between light and matter. Nature, 443, 557–560.CrossRefGoogle Scholar
  43. 43.
    Valivarthi, R., Grimau Puigibert, M., Zhou, Q., et al. (2016). Quantum teleportation across a metropolitan-area fibre network. Nature Photonics, 10, 676.CrossRefGoogle Scholar
  44. 44.
    Sun, Q. C., Mao, Y. L., Chen, S. J., et al. (2016). Quantum teleportation with independent sources and prior entanglement distribution over a network. Nature Photonics, 10, 671.CrossRefGoogle Scholar
  45. 45.
    Moehring, D. L., Maunz, P., & Olmschenk, S. (2007). Entanglement of single-atom quantum bits at a distance. Nature, 449, 68.CrossRefGoogle Scholar
  46. 46.
    Stute, A., Casabone, B., Schindler, P., et al. (2012). Tunable ion–photon entanglement in an optical cavity. Nature, 485, 482.CrossRefGoogle Scholar
  47. 47.
    Volz, J., et al. (2006). Observation of entanglement of a single photon with a trapped atom. Physical Review Letters, 96, 030404.CrossRefGoogle Scholar
  48. 48.
    Volz, J., Weber, M., Schlenk, D., et al. (2006). Observation of entanglement of a single photon with a trapped atom. Physical Review Letters, 96, 030404.CrossRefGoogle Scholar
  49. 49.
    Ritter, S., Nölleke, C., Hahn, C., et al. (2012). An elementary quantum network of single atoms in optical cavities. Nature, 484, 195–200.CrossRefGoogle Scholar
  50. 50.
    Togan, E., Chu, Y., Trifonov, A. S., et al. (2010). Quantum entanglement between an optical photon and a solid-state spin qubit. Nature, 466.Google Scholar
  51. 51.
    De Greve, L. Y., McMahon, P. L., et al. (2012). Quantum–dot spin–photon entanglement via frequency down-conversion to telecom wavelength. Nature, 491, 421.CrossRefGoogle Scholar
  52. 52.
    Gao, W. B., Fallahi, P., Togan, E., et al. (2012). Observation of entanglement between a quantum dot spin and a single photon. Nature, 491, 426.CrossRefGoogle Scholar
  53. 53.
    Bock, M., Eich, P., Kucera, S., et al. (2018). High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion. Nature Communications, 9, 1998.CrossRefGoogle Scholar
  54. 54.
    Matsukevich, D. N., & Kuzmich, A. (2004). Quantum state transfer between matter and light. Science, 306, 663.CrossRefGoogle Scholar
  55. 55.
    Matsukevich, D. N., Chaneliere, T., Bhattacharya, M., et al. (2005). Entanglement of a photon and a collective atomic excitation. Physical Review Letters, 95, 040405.CrossRefGoogle Scholar
  56. 56.
    Farrera, P., Heinze, G., de Riedmatten, H., et al. (2018). Entanglement between a photonic time-bin qubit and a collective atomic spin excitation. Physical Review Letters, 120, 100501.CrossRefGoogle Scholar
  57. 57.
    Li, L., Dudin, Y. O., & Kuzmich, A. (2013). Entanglement between light and an optical atomic excitation. Nature, 498, 466–469.CrossRefGoogle Scholar
  58. 58.
    de Riedmatten, H., Laurat, J., Chou, C. W., et al. (2006). Direct measurement of decoherence for entanglement between a photon and stored atomic excitation. Physical Review Letters, 97, 113603.CrossRefGoogle Scholar
  59. 59.
    Chen, S., Chen, Y. A., Zhao, B., et al. (2007). Demonstration of a stable atom-photon entanglement source for quantum repeaters. Physical Review Letters, 99, 180505.CrossRefGoogle Scholar
  60. 60.
    Lodahl, P. (2018). Quantum-dot based photonic quantum networks. Quantum Science Technology, 3, 013001.CrossRefGoogle Scholar
  61. 61.
    R. L. Rivest, , A. Shamir, and L. M. Adleman, “A method of obtaining digital signatures and public-key cryptosystems,” Communications of the ACM 21, 120 (1978).CrossRefGoogle Scholar
  62. 62.
    Carrasco-Casado, A., Fernandez Marmol, V., & Denisenko, N. (2016). Free-space quantum key distribution. In M. Uysal, C. Capsoni, Z. Ghassemlooy, et al. (Eds.), Optical wireless communications–an emerging technology. Springer International Publishing.Google Scholar
  63. 63.
    Deutsch, D., Ekert, A., Jozsa, R., et al. (1996). Quantum privacy amplification and the security of quantum cryptography over noisy channels. Physical Review Letters, 77, 2818.CrossRefGoogle Scholar
  64. 64.
    Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., et al. (2007). Entanglement-based quantum communication over 144 km. Nature Physics, 3, 481.CrossRefGoogle Scholar
  65. 65.
    Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., & Braunstein, S. L. (2015). Advances in quantum teleportation. Nature Photonics, 9, 641.CrossRefGoogle Scholar
  66. 66.
    Sangouard, N., Simon, C., de Riedmatten, H., & Gisin, N. (2011). Quantum repeaters based on atomic ensembles and linear optics. Reviews of Modern Physics, 83, 33.CrossRefGoogle Scholar
  67. 67.
    Duan, L.-M., Lukin, M. D., Cirac, J. I., & Zoller, P. (2001). Long-distance quantum communication with atomic ensembles and linear optics. Nature (London), 414, 413.CrossRefGoogle Scholar
  68. 68.
    Briegel, H.-J., Dür, W., Cirac, J. I., & Zoller, P. (1998). Quantum repeaters: The role of imperfect local operations in quantum communication. Physical Review Letters, 81, 5932.CrossRefGoogle Scholar
  69. 69.
    W. Tittel, , M. Afzelius, T. Chaneliére, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems”, Laser & Photonics Reviews 4, 244 (2009).CrossRefGoogle Scholar
  70. 70.
    Afzelius, M., Simon, C., de Riedmatten, H., & Gisin, N. (2009). Multimode quantum memory based on atomic frequency combs. Physical Review A, 79, 052329.CrossRefGoogle Scholar
  71. 71.
    Clausen, C., Usmani, I., Bussières, F., et al. (2011). Quantum storage of photonic entanglement in a crystal. Nature, 469, 508.CrossRefGoogle Scholar
  72. 72.
    Afzelius, M., Gisin, N., & de Riedmatten, H. (2015). Quantum memory for photons. Physics Today, 68, 42.CrossRefGoogle Scholar
  73. 73.
    Scarani, V., Behmann-Pasquinucci, H., Cerf, N. J., et al. (2009). The security of practical quantum key distribution. Reviews of Modern Physics, 81, 1301.CrossRefGoogle Scholar
  74. 74.
    Wang, X. B. (2005). Beating the photon-number-splitting attack in practical quantum cryptography. Physical Review Letters, 94, 230503.CrossRefGoogle Scholar
  75. 75.
    Waks, E., Inoue, K., Santori, C., Fattal, D., Vučković, J., Solomon, G. S., & Yamamoto, Y. (2002). Quantum cryptography with a photon turnstile. Nature, 420, 762.CrossRefGoogle Scholar
  76. 76.
    Heindel, T., Kessler, C., & Rau, M. (2012). Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range. New Journal of Physics, 14, 083001.CrossRefGoogle Scholar
  77. 77.
    Intallura, P. M., Ward, M. B., Karimov, O. Z., et al. (2009). Quantum communication using single photons from a semiconductor quantum dot emitting at a telecommunication wavelength. Journal of Optics A: Pure and Applied Optics, 11, 054005.CrossRefGoogle Scholar
  78. 78.
    Intallura, P. M., Ward, M. B., Karimov, O. Z., et al. (2007). Quantum key distribution using a triggered quantum dot source emitting near 1.3 μm. Applied Physics Letters, 91, 161103.CrossRefGoogle Scholar
  79. 79.
    Takemoto, K., Nambu, Y., Miyazawa, T., et al. (2010). Transmission experiment of quantum keys over 50 km using high-performance quantum-dot single-photon source at 1.5 μm wavelength. Applied Physics Express, 3, 092802.CrossRefGoogle Scholar
  80. 80.
    Takemoto, K., Nambu, Y., Miyazawa, T., et al. (2015). Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors. Scientific Reports, 5, 14383.CrossRefGoogle Scholar
  81. 81.
    Santori, C., Pelton, M., Solomon, G., Dale, Y., & Yamamoto, Y. (2001). Triggered single photons from a quantum dot. Physical Review Letters, 86, 1502.CrossRefGoogle Scholar
  82. 82.
    Santori, C., Fattal, D., & Vučković, J. (2002). Indistinguishable photons from a single-photon device. Nature, 419, 594.CrossRefGoogle Scholar
  83. 83.
    Soujaeff, A., Nishioka, T., Hasegawa, T., et al. (2007). Quantum key distribution at 1550 nm using a pulse heralded single photon source. Optics Express, 15, 726.CrossRefGoogle Scholar
  84. 84.
    Ward, M. B., Farrow, T., See, P., et al. (2007). Electrically driven telecommunication wavelength single-photon source. Applied Physics Letters, 90, 063512.CrossRefGoogle Scholar
  85. 85.
    Gobby, C., Yuan, Z. L., & Shields, A. J. (2004). Quantum key distribution over 122 km of standard telecom fiber. Applied Physics Letters, 84, 3762.CrossRefGoogle Scholar
  86. 86.
    Gottesman, D., Lo, H.-K., Lütkenhaus, N., & Preskill, J. (2004). Security of quantum key distribution with imperfect devices. Quantum Information and Computation, 4, 325.Google Scholar
  87. 87.
    Brassard, G., & Savail, L. (1994). Secret-key reconciliation by public discussion. Lecture Notes in Computer Science, 765, 410.CrossRefGoogle Scholar
  88. 88.
    Yoshino, K., Fujiwara, M., Tanaka, A., et al. (2012). High-speed wavelength-division multiplexing quantum key distribution system. Optics Letters, 37, 223–225.CrossRefGoogle Scholar
  89. 89.
    Tang, Y. L., Yin, H. L., Ma, X. F., et al. (2013). Source attack of decoy-state quantum key distribution using phase information. Physical Review A, 88, 022308.CrossRefGoogle Scholar
  90. 90.
    Takemoto, K., Takatsu, M., Hirose, S., & Yokoyama, N. (2007). An optical horn structure for single-photon source using quantum dots at telecommunication wavelength. Journal of Applied Physics, 101, 081720.CrossRefGoogle Scholar
  91. 91.
    Song, H. Z., Takemoto, K., Miyazawa, T., et al. (2013). Design of Si/SiO2 micropillar cavities for Purcell-enhanced single photon emission at 1.55 μm from InAs/InP quantum dots. Optics Letters, 38, 3241.CrossRefGoogle Scholar
  92. 92.
    Rosenberg, D., Peterson, C., Harrington, J., et al. (2009). Practical long-distance quantum key distribution system using decoy levels. New Journal of Physics, 11, 045009.CrossRefGoogle Scholar
  93. 93.
    Liu, Y., Chen, T. Y., Wang, J., et al. (2010). Decoy-state quantum key distribution with polarized photons over 200 km. Optics Express, 18(51).Google Scholar
  94. 94.
    Nilsson, J., Stevenson, R. M., Chan, K. H. A., et al. (2013). Quantum teleportation using a light-emitting diode. Nature Photonics, 7, 311.CrossRefGoogle Scholar
  95. 95.
    Stevenson, R., Nilsson, J., Bennett, A., et al. (2013). Quantum teleportation of laser-generated photons with an entangled-light-emitting diode. Nature Communications, 4, 2859.CrossRefGoogle Scholar
  96. 96.
    Varnava, C., Stevenson, R., Nilsson, J., et al. (2016). An entangled-LED-driven quantum relay over 1km. npj Quantum Information, 2, 16006.CrossRefGoogle Scholar
  97. 97.
    Huwer, J., Stevenson, R., Skiba-Szymanska, J., et al. (2017). Quantum dot-based telecommunication-wavelength quantum relay. Physical Review Applied, 8, 024007.CrossRefGoogle Scholar
  98. 98.
    Reindl, M., Huber, D., Schimpf, C., et al. (2018). All-photonic quantum teleportation using on-demand solid-state quantum emitters. Science Advances, 4, 1255.CrossRefGoogle Scholar
  99. 99.
    Economou, S. (2012). Putting a spin on photon entanglement. Nature, 491, 343.CrossRefGoogle Scholar
  100. 100.
    Xu, X. D., Wu, Y. W., Sun, B., et al. (2007). Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling. Physical Review Letters, 99, 097401.CrossRefGoogle Scholar
  101. 101.
    Flagg, E., Muller, A., Polyakov, S., et al. (2010). Interference of single photons from two separate semiconductor quantum dots. Physical Review Letters, 104, 137401.CrossRefGoogle Scholar
  102. 102.
    Patel, R., Bennett, A., Farrer, I., et al. (2010). Two-photon interference of the emission from electrically tunable remote quantum dots. Nature Photonics, 4, 632.CrossRefGoogle Scholar
  103. 103.
    Delteil, A., Sun, Z., Gao, W. B., et al. (2016). Generation of heralded entanglement between distant hole spins. Nature Physics, 12, 218.CrossRefGoogle Scholar
  104. 104.
    De Greve, K., McMahon, P., Yu, L., et al. (2013). Complete tomography of a high-fidelity solid-state entangled spin–photon qubit pair. Nature Communications, 4, 2228.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations