Gate-Defined Quantum Dots: Fundamentals and Applications

Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 27)


Gate-defined quantum dots (GDQD) have gained rapid developments due to the progresses of modern nanofabrication technologies in recent years. Because of their high tunability, COMS compatibility, and long coherence time, gate-defined quantum dots are considered as one of the most likely candidates for quantum computation. This chapter reviews the fundamental concepts, recent developments, and applications of gate-defined quantum dots.



This chapter was supported by the National Natural Science Foundation of China (Grants Nos. 61704164 and 91836102).


  1. 1.
    Kouwenhoven, L., & Marcus, C. (1998). Quantum dots. Physics World, 11, 35–40.CrossRefGoogle Scholar
  2. 2.
    van der Wiel, W. G., et al. (2002). Electron transport through double quantum dots. Reviews of Modern Physics, 75, 1.CrossRefGoogle Scholar
  3. 3.
    Ralph, D. C., Black, C. T., & Tinkham, M. (1995). Spectroscopic measurements of discrete electronic states in single metal particles. Physical Review Letters, 74, 3241–3244.CrossRefGoogle Scholar
  4. 4.
    Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933.CrossRefGoogle Scholar
  5. 5.
    Cleuziou, J. P., Wernsdorfer, W., Bouchiat, V., Ondarçuhu, T., & Monthioux, M. (2006). Carbon nanotube superconducting quantum interference device. Nature Nanotechnology, 1, 53–59.CrossRefGoogle Scholar
  6. 6.
    De Franceschi, S., Kouwenhoven, L., Schönenberger, C., & Wernsdorfer, W. (2010). Hybrid superconductor–quantum dot devices. Nature Nanotechnology, 5, 703.CrossRefGoogle Scholar
  7. 7.
    Loss, D., & DiVincenzo, D. P. (1998). Quantum computation with quantum dots. Physical Review A, 57, 120–126.CrossRefGoogle Scholar
  8. 8.
    Zhang, X., et al. (2018). Semiconductor quantum computation. National Science Review, 6, 32–54.CrossRefGoogle Scholar
  9. 9.
    Georgescu, I. M., Ashhab, S., & Nori, F. (2014). Quantum simulation. Reviews of Modern Physics, 86, 153–185.CrossRefGoogle Scholar
  10. 10.
    Hensgens, T., et al. (2017). Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array. Nature, 548, 70.CrossRefGoogle Scholar
  11. 11.
    Le Hur, K., Simon, P., & Loss, D. (2007). Transport through a quantum dot with SU(4) Kondo entanglement. Physical Review B, 75, 035332.CrossRefGoogle Scholar
  12. 12.
    Le Hur, K., et al. (2016). Many-body quantum electrodynamics networks: Non-equilibrium condensed matter physics with light. Comptes Rendus Physique, 17, 808–835.CrossRefGoogle Scholar
  13. 13.
    Koppens, F. H. L., Nowack, K. C., & Vandersypen, L. M. K. (2008). Spin echo of a single electron spin in a quantum dot. Physical Review Letters, 100, 236802.CrossRefGoogle Scholar
  14. 14.
    Veldhorst, M., et al. (2014). An addressable quantum dot qubit with fault-tolerant control-fidelity. Nature Nanotechnology, 9, 981.CrossRefGoogle Scholar
  15. 15.
    Muhonen, J. T., et al. (2014). Storing quantum information for 30 seconds in a nanoelectronic device. Nature Nanotechnology, 9, 986.CrossRefGoogle Scholar
  16. 16.
    Frey, T., et al. (2012). Dipole coupling of a double quantum dot to a microwave resonator. Physical Review Letters, 108, 046807.CrossRefGoogle Scholar
  17. 17.
    Petersson, K. D., et al. (2012). Circuit quantum electrodynamics with a spin qubit. Nature, 490, 380–383.CrossRefGoogle Scholar
  18. 18.
    Delbecq, M. R., et al. (2011). Coupling a quantum dot, fermionic leads, and a microwave cavity on a chip. Physical Review Letters, 107, 256804.CrossRefGoogle Scholar
  19. 19.
    Toida, H., Nakajima, T., & Komiyama, S. (2013). Vacuum Rabi splitting in a semiconductor circuit QED system. Physical Review Letters, 110, 066802.CrossRefGoogle Scholar
  20. 20.
    Deng, G.-W., et al. (2015). Charge number dependence of the dephasing rates of a graphene double quantum dot in a circuit QED architecture. Physical Review Letters, 115, 126804.CrossRefGoogle Scholar
  21. 21.
    Deng, G. W., et al. (2015). Coupling two distant double quantum dots with a microwave resonator. Nano Letters, 15, 6620.CrossRefGoogle Scholar
  22. 22.
    Steele, G. A., et al. (2009). Strong coupling between single-electron tunneling and nanomechanical motion. Science, 325, 1103.CrossRefGoogle Scholar
  23. 23.
    Lassagne, B., Tarakanov, Y., Kinaret, J., Garcia-Sanchez, D., & Bachtold, A. (2009). Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science, 325, 1107.CrossRefGoogle Scholar
  24. 24.
    Benyamini, A., Hamo, A., Kusminskiy, S. V., Oppen, F. V., & Ilani, S. (2014). Real-space tailoring of the electron-phonon coupling in ultraclean nanotube mechanical resonators. Nature Physics, 10, 151–156.CrossRefGoogle Scholar
  25. 25.
    Deng, G. W., et al. (2016). Strongly coupled nanotube electromechanical resonators. Nano Letters, 16, 5456–5462.CrossRefGoogle Scholar
  26. 26.
    Li, S. X., et al. (2016). Parametric strong mode-coupling in carbon nanotube mechanical resonators. Nanoscale, 8, 14809–14813.CrossRefGoogle Scholar
  27. 27.
    Luo, G., et al. (2017). Coupling graphene nanomechanical motion to a single-electron transistor. Nanoscale, 9, 5608–5614.CrossRefGoogle Scholar
  28. 28.
    Zhu, D., et al. (2017). Coherent phonon Rabi oscillations with a high-frequency carbon nanotube phonon cavity. Nano Letters, 17, 915–921.CrossRefGoogle Scholar
  29. 29.
    Luo, G., et al. (2018). Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity. Nature Communications, 9, 383.CrossRefGoogle Scholar
  30. 30.
    Yoneda, J., et al. (2018). A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nature Nanotechnology, 13, 102–106.CrossRefGoogle Scholar
  31. 31.
    Tarucha, S., Austing, D. G., Honda, T., van der Hage, R. J., & Kouwenhoven, L. P. (1996). Shell filling and spin effects in a few electron quantum dot. Physical Review Letters, 77, 3613–3616.CrossRefGoogle Scholar
  32. 32.
    Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S., & Vandersypen, L. M. K. (2007). Spins in few-electron quantum dots. Reviews of Modern Physics, 79, 1217–1265.CrossRefGoogle Scholar
  33. 33.
    Gorter, C. J. (1951). A possible explanation of the increase of the electrical resistance of thin metal films at low temperatures and small field strengths. Physica, 17, 777–780.CrossRefGoogle Scholar
  34. 34.
    Fulton, T. A., & Dolan, G. J. (1987). Observation of single-electron charging effects in small tunnel junctions. Physical Review Letters, 59, 109–112.CrossRefGoogle Scholar
  35. 35.
    Ciorga, M., et al. (2000). Addition spectrum of a lateral dot from coulomb and spin-blockade spectroscopy. Physical Review B, 61, R16315–R16318.CrossRefGoogle Scholar
  36. 36.
    Elzerman, J. M., et al. (2003). Few-electron quantum dot circuit with integrated charge read out. Physical Review B, 67, 161308.CrossRefGoogle Scholar
  37. 37.
    Young, C. E., & Clerk, A. A. (2010). Inelastic backaction due to quantum point contact charge fluctuations. Physical Review Letters, 104, 186803.CrossRefGoogle Scholar
  38. 38.
    Elzerman, J. M., Hanson, R., Willems van Beveren, L. H., Vandersypen, L. M. K., & Kouwenhoven, L. P. (2004). Excited-state spectroscopy on a nearly closed quantum dot via charge detection. Applied Physics Letters, 84, 4617–4619.CrossRefGoogle Scholar
  39. 39.
    Petta, J. R., Johnson, A. C., Marcus, C. M., Hanson, M. P., & Gossard, A. C. (2004). Manipulation of a single charge in a double quantum dot. Physical Review Letters, 93, 186802.CrossRefGoogle Scholar
  40. 40.
    Bluhm, H., et al. (2010). Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nature Physics, 7, 109.CrossRefGoogle Scholar
  41. 41.
    Zwanenburg, A. S. D. F. A., Morello, A., Simmons, M. Y., Hollenberg, L. C. L., Klimeck, G., Rogge, S., Coppersmith, S. N., & Eriksson, M. A. (2013). Silicon quantum electronics. Reviews of Modern Physics, 85, 961.CrossRefGoogle Scholar
  42. 42.
    Saeedi, K., et al. (2013). Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science, 342, 830–833.CrossRefGoogle Scholar
  43. 43.
    Wang, K., Payette, C., Dovzhenko, Y., Deelman, P. W., & Petta, J. R. (2013). Charge relaxation in a single-electron Si/SiGe double quantum dot. Physical Review Letters, 111, 046801.CrossRefGoogle Scholar
  44. 44.
    Angus, S. J., Ferguson, A. J., Dzurak, A. S., & Clark, R. G. (2007). Gate-defined quantum dots in intrinsic silicon. Nano Letters, 7, 2051–2055.CrossRefGoogle Scholar
  45. 45.
    Zajac, D. M., et al. (2018). Resonantly driven CNOT gate for electron spins. Science, 359, 439.CrossRefGoogle Scholar
  46. 46.
    Laird, E. A., et al. (2015). Quantum transport in carbon nanotubes. Reviews of Modern Physics, 87, 703–764.CrossRefGoogle Scholar
  47. 47.
    Kuemmeth, F., Ilani, S., Ralph, D. C., & McEuen, P. L. (2008). Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature, 452, 448–452.CrossRefGoogle Scholar
  48. 48.
    Biercuk, M. J., Garaj, S., Mason, N., Chow, J. M., & Marcus, C. M. (2005). Gate-defined quantum dots on carbon nanotubes. Nano Letters, 5, 1267–1271.CrossRefGoogle Scholar
  49. 49.
    Fasth, C., Fuhrer, A., Björk, M. T., & Samuelson, L. (2005). Tunable double quantum dots in InAs nanowires defined by local gate electrodes. Nano Letters, 5, 1487–1490.CrossRefGoogle Scholar
  50. 50.
    Li, S.-X., et al. (2017). Measuring hole spin states of single quantum dot in germanium hut wire. Applied Physics Letters, 110, 133105.CrossRefGoogle Scholar
  51. 51.
    Zhang, Z. Z., et al. (2017). Electrotunable artificial molecules based on van der Waals heterostructures. Science Advances, 3, e1701699.CrossRefGoogle Scholar
  52. 52.
    Wang, L.-J., et al. (2010). A graphene quantum dot with a single electron transistor as an integrated charge sensor. Applied Physics Letters, 97, 262113.CrossRefGoogle Scholar
  53. 53.
    Wei, D., et al. (2013). Tuning inter-dot tunnel coupling of an etched graphene double quantum dot by adjacent metal gates. Scientific Reports, 3, 3175.CrossRefGoogle Scholar
  54. 54.
    Wang, L. J., et al. (2011). Gates controlled parallel-coupled double quantum dot on both single layer and bilayer graphene. Applied Physics Letters, 99, 112117.CrossRefGoogle Scholar
  55. 55.
    Zhang, M.-L., et al. (2014). Measuring the complex admittance of a nearly isolated graphene quantum dot. Applied Physics Letters, 105, 073510.CrossRefGoogle Scholar
  56. 56.
    Ashoori, R. C. (1996). Electrons in artificial atoms. Nature, 379, 413–419.CrossRefGoogle Scholar
  57. 57.
    McEuen, P. L., et al. (1991). Transport spectroscopy of a coulomb island in the quantum hall regime. Physical Review Letters, 66, 1926–1929.CrossRefGoogle Scholar
  58. 58.
    Shi, Z., et al. (2012). Fast hybrid silicon double-quantum-dot qubit. Physical Review Letters, 108, 140503.CrossRefGoogle Scholar
  59. 59.
    Shi, Z., et al. (2014). Fast coherent manipulation of three-electron states in a double quantum dot. Nature Communications, 5, 3020.CrossRefGoogle Scholar
  60. 60.
    Prance, J. R., et al. (2012). Single-shot measurement of triplet-singlet relaxation in a Si/SiGe double quantum dot. Physical Review Letters, 108, 046808.CrossRefGoogle Scholar
  61. 61.
    Kim, D., et al. (2014). Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature, 511, 70.CrossRefGoogle Scholar
  62. 62.
    Cao, G., et al. (2016). Tunable hybrid qubit in a GaAs double quantum dot. Physical Review Letters, 116, 086801.CrossRefGoogle Scholar
  63. 63.
    Wang, B.-C., et al. (2017). Tunable hybrid qubit in a triple quantum dot. Physical Review Applied, 064035, 8.Google Scholar
  64. 64.
    Yang, Y.-C., Coppersmith, S. N., & Friesen, M. (2019). Achieving high-fidelity single-qubit gates in a strongly driven charge qubit with 1/f charge noise. npj Quantum Information, 5, 12.CrossRefGoogle Scholar
  65. 65.
    Vandersypen, L. M. K., & Chuang, I. L. (2005). NMR techniques for quantum control and computation. Reviews of Modern Physics, 76, 1037–1069.CrossRefGoogle Scholar
  66. 66.
    Jozsa, R. (1994). Fidelity for mixed quantum states. Journal of Modern Optics, 41, 2315–2323.CrossRefGoogle Scholar
  67. 67.
    Chan, K. W., et al. (2018). Assessment of a silicon quantum dot spin qubit environment via noise spectroscopy. Physical Review Applied, 044017, 10.Google Scholar
  68. 68.
    Fogarty, M. A., et al. (2018). Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet-triplet readout. Nature Communications, 9, 4370.CrossRefGoogle Scholar
  69. 69.
    Kawakami, E., et al. (2014). Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nature Nanotechnology, 9, 666.CrossRefGoogle Scholar
  70. 70.
    Bluhm, H., Foletti, S., Mahalu, D., Umansky, V., & Yacoby, A. (2010). Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath. Physical Review Letters, 105, 216803.CrossRefGoogle Scholar
  71. 71.
    Maune, B. M., et al. (2012). Coherent singlet-triplet oscillations in a silicon-based double quantum dot. Nature, 481, 344.CrossRefGoogle Scholar
  72. 72.
    Shulman, M. D., et al. (2014). Suppressing qubit dephasing using real-time Hamiltonian estimation. Nature Communications, 5, 5156.CrossRefGoogle Scholar
  73. 73.
    Nichol, J. M., et al. (2017). High-fidelity entangling gate for double-quantum-dot spin qubits. npj Quantum Information, 3, 3.CrossRefGoogle Scholar
  74. 74.
    Li, R., et al. (2018). A crossbar network for silicon quantum dot qubits. Science Advances, 4, eaar3960.CrossRefGoogle Scholar
  75. 75.
    DiVincenzo, D. P. (2000). The physical implementation of quantum computation. Fortschritte der Physik, 48, 771–783.CrossRefGoogle Scholar
  76. 76.
    Li, H.-O., et al. (2015). Conditional rotation of two strongly coupled semiconductor charge qubits. Nature Communications, 6, 7681.CrossRefGoogle Scholar
  77. 77.
    Li, H.-O., et al. (2018). Controlled quantum operations of a semiconductor three-qubit system. Physical Review Applied, 024015, 9.Google Scholar
  78. 78.
    Wallraff, A., et al. (2004). Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 431, 162–167.CrossRefGoogle Scholar
  79. 79.
    Majer, J., et al. (2007). Coupling superconducting qubits via a cavity bus. Nature, 449, 443.CrossRefGoogle Scholar
  80. 80.
    Neeley, M., et al. (2010). Generation of three-qubit entangled states using superconducting phase qubits. Nature, 467, 570.CrossRefGoogle Scholar
  81. 81.
    Song, C., et al. (2019). Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science, 365, 574–577.CrossRefGoogle Scholar
  82. 82.
    Childress, L., Sørensen, A., & Lukin, M. (2004). Mesoscopic cavity quantum electrodynamics with quantum dots. Physical Review A, 69, 042302.CrossRefGoogle Scholar
  83. 83.
    Guo, G.-P., Zhang, H., Hu, Y., Tu, T., & Guo, G.-C. (2008). Dispersive coupling between the superconducting transmission line resonator and the double quantum dots. Physical Review A, 78, 020302.CrossRefGoogle Scholar
  84. 84.
    Lin, Z.-R., Guo, G.-P., Tu, T., Zhu, F.-Y., & Guo, G.-C. (2008). Generation of quantum-dot cluster states with a superconducting transmission line resonator. Physical Review Letters, 101, 230501.CrossRefGoogle Scholar
  85. 85.
    Deng, G.-W., et al. (2013). Circuit QED with a graphene double quantum dot and a reflection-line resonator. arXiv, 1310, 6118.Google Scholar
  86. 86.
    Viennot, J. J., Dartiailh, M. C., Cottet, A., & Kontos, T. (2015). Coherent coupling of a single spin to microwave cavity photons. Science, 349, 408.CrossRefGoogle Scholar
  87. 87.
    Mi, X., Cady, J. V., Zajac, D. M., Deelman, P. W., & Petta, J. R. (2017). Strong coupling of a single electron in silicon to a microwave photon. Science, 355, 156.CrossRefGoogle Scholar
  88. 88.
    Stockklauser, A., et al. (2017). Strong coupling cavity QED with gate-defined double quantum dots enabled by a high impedance resonator. Physical Review X, 7, 011030.CrossRefGoogle Scholar
  89. 89.
    Mi, X., et al. (2018). A coherent spin–photon interface in silicon. Nature, 555, 599.CrossRefGoogle Scholar
  90. 90.
    Samkharadze, N., et al. (2018). Strong spin-photon coupling in silicon. Science, 359, 1123.CrossRefGoogle Scholar
  91. 91.
    Landig, A. J., et al. (2018). Coherent spin–photon coupling using a resonant exchange qubit. Nature, 560, 179–184.CrossRefGoogle Scholar
  92. 92.
    Frey, T., et al. (2012). Quantum dot admittance probed at microwave frequencies with an on-chip resonator. Physical Review B, 86, 115303.CrossRefGoogle Scholar
  93. 93.
    Basset, D. D. J. J., Stockklauser, A., Frey, T., Reichl, C., Wegscheider, W., Ihn, T. M., Ensslin, K., & Wallraff, A. (2013). Single-electron double quantum dot dipole-coupled to a single photonic mode. Physical Review B, 88, 125312.CrossRefGoogle Scholar
  94. 94.
    Liu, Y. Y., et al. (2015). Semiconductor double quantum dot micromaser. Science, 347, 285–287.CrossRefGoogle Scholar
  95. 95.
    Delbecq, M. R., et al. (2013). Photon-mediated interaction between distant quantum dot circuits. Nature Communications, 4, 1400.CrossRefGoogle Scholar
  96. 96.
    Wang, R., Deacon, R. S., Car, D., Bakkers, E. P. A. M., & Ishibashi, K. (2016). InSb nanowire double quantum dots coupled to a superconducting microwave cavity. Applied Physics Letters, 108, 203502.CrossRefGoogle Scholar
  97. 97.
    Li, Y., et al. (2018). Coupling a germanium hut wire hole quantum dot to a superconducting microwave resonator. Nano Letters, 18, 2091–2097.CrossRefGoogle Scholar
  98. 98.
    Rabl, P., et al. (2010). A quantum spin transducer based on nanoelectromechanical resonator arrays. Nature Physics, 6, 602.CrossRefGoogle Scholar
  99. 99.
    Zhou, L.-g., Gao, M., Peng, J.-l., & Wang, X.-b. (2012). Scalability of quantum computing based on nanomechanical resonators. Physical Review A, 85, 042326.CrossRefGoogle Scholar
  100. 100.
    Ganzhorn, M., & Wernsdorfer, W. (2012). Dynamics and dissipation induced by single-electron tunneling in carbon nanotube nanoelectromechanical systems. Physical Review Letters, 108, 175502.CrossRefGoogle Scholar
  101. 101.
    Meerwaldt, H. B., et al. (2012). Probing the charge of a quantum dot with a nanomechanical resonator. Physical Review B, 86, 115454.CrossRefGoogle Scholar
  102. 102.
    Weber, P., et al. (2015). Switchable coupling of vibrations to two-electron carbon-nanotube quantum dot states. Nano Letters, 15, 4417–4422.CrossRefGoogle Scholar
  103. 103.
    Hamo, A., et al. (2016). Electron attraction mediated by coulomb repulsion. Nature, 535, 395.CrossRefGoogle Scholar
  104. 104.
    Khivrich, I., Clerk, A. A., & Ilani, S. (2019). Nanomechanical pump–probe measurements of insulating electronic states in a carbon nanotube. Nature Nanotechnology, 14, 161–167.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations