Advertisement

Colloidal Quantum Dots for Highly Efficient Photovoltaics

Chapter
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 27)

Abstract

Owing to strong quantum confinement, solution-processed colloidal quantum dots (CQDs) provide a unique route for fabrication of highly efficient photovoltaics to overcome the Shockley-Queisser limit through multiple exciton generation (MEG). Also, the CQDs PVs are cost-effective due to fabrication at low temperatures. Despite the high quantum limit of 42–44%, the highest experimental power conversion efficiency reported so far in PbS CQD PVs still remains at ~11.2%. Recent studies have shown that the performance of CQD solar cells is mainly limited by defects through different recombination channels. In this work, we identify the reasons for a large open circuit voltage (VOC) deficit, associated with short diffusion length and lifetime of minority carriers by different types of defect recombination pathways in the devices. We also summarize recent progress in improvement of device efficiency through treatment of defect. Surface modification is primarily intended to passivate surface defects in CQDs. Whereas, interface defects can be treated by engineering of transport layers or device architecture through, e.g., ionic doping or additional layers, entailing fast dissociation and smooth transport of charge carriers at junctions.

Keywords

Colloidal quantum dots Multiple exciton generation Photovoltaics Defect recombinations Passivation Electron transport layer 

Notes

Acknowledgments

The research funding from the China Postdoctoral Science Foundation through the project (No. 2018M640906) is greatly acknowledged by the authors. L.Q. was supported by the National Natural Science Foundation of China (Grant No.:11774044).

References

  1. 1.
    Renewable Energy BP.Google Scholar
  2. 2.
    Renewable Energy Ren21.Google Scholar
  3. 3.
    Renewable Energy Capacity Growth IEA.Google Scholar
  4. 4.
    Photovoltaic Report IFS.Google Scholar
  5. 5.
    Jean, J., Brown, P. R., Jaffe, R. L., Buonassisi, T., & Bulović, V. (2015). Pathways for solar photovoltaics. Energy & Environmental Science, 8(4), 1200–1219.CrossRefGoogle Scholar
  6. 6.
    Jean, J., Xiao, J., Nick, R., Moody, N., Nasilowski, M., Bawendi, M., & Bulović, V. (2018). Synthesis cost dictates the commercial viability of lead sulfide and perovskite quantum dot photovoltaics. Energy & Environmental Science, 11(9), 2295–2305.CrossRefGoogle Scholar
  7. 7.
    Shockley, W., & Queisser, H. J. (1961). Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 32(3), 510–519.CrossRefGoogle Scholar
  8. 8.
    Zhang, X., Hägglund, C., Johansson, M. B., Sveinbjörnsson, K., & Johansson, E. M. J. (2016). Fine tuned nanolayered metal/metal oxide electrode for semitransparent colloidal quantum dot solar cells. Advanced Functional Materials, 26(12), 1921–1929.CrossRefGoogle Scholar
  9. 9.
    Ding, C., Zhang, Y., Liu, F., Nakazawa, N., Huang, Q., Hayase, S., Ogomi, Y., Toyoda, T., Wang, R., & Shen, Q. (2017). Recombination suppression in PbS quantum dot heterojunction solar cells by energy-level alignment in the quantum dot active layers. ACS Applied Materials & Interfaces, 10(31), 26142–26152.CrossRefGoogle Scholar
  10. 10.
    Kagan, C. R., Lifshitz, E., Sargent, E. H., & Talapin, D. V. (2016). Building devices from colloidal quantum dots. Sciences, 353(6302), aac5523.CrossRefGoogle Scholar
  11. 11.
    Hu, L., Patterson, R. J., Hu, Y., Chen, W., Zhang, Z., Yuan, L., Chen, Z., Conibeer, G. J., Wang, G., & Huang, S. (2017). High performance PbS colloidal quantum dot solar cells by employing solution-processed CdS thin films from a single-source precursor as the electron transport layer. Advanced Functional Materials, 27(46), 1703687.CrossRefGoogle Scholar
  12. 12.
    Tang, J., Kemp, K. W., Hoogland, S., Jeong, K. S., Liu, H., Levina, L., Furukawa, M., Wang, X., Debnath, R., Cha, D., Chou, K. W., Fischer, A., Amassian, A., Asbury, J. B., & Sargent, E. H. (2011). Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Materials, 10(10), 765.CrossRefGoogle Scholar
  13. 13.
    Murphy, J. E., Beard, M. C., Norman, A. G., Ahrenkiel, S. P., Johnson, J. C., Yu, P., Mićić, O. I., Ellingson, R. J., & Nozik, A. J. (2006). PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation. Journal of the American Chemical Society, 128(10), 3241–3247.CrossRefGoogle Scholar
  14. 14.
    Kirmani, A. R., Sheikh, A. D., Niazi, M. R., Haque, M. A., Liu, M., de Arquer, F. P. G., Xu, J., Sun, B., Voznyy, O., & Gasparini, N. (2018). Overcoming the ambient manufacturability-scalability-performance bottleneck in colloidal quantum dot photovoltaics. Advanced Materials, 30(35), 1801661.CrossRefGoogle Scholar
  15. 15.
    Yuan, M., Liu, M., & Sargent, E. H. (2016). Colloidal quantum dot solids for solution-processed solar cells. Nature Energy, 1(3), 16016.CrossRefGoogle Scholar
  16. 16.
    Carey, G. H., Abdelhady, A. L., Ning, Z., Thon, S. M., Bakr, O. M., & Sargent, E. H. (2015). Colloidal quantum dot solar cells. Chemical Reviews, 115(23), 12732–12763.CrossRefGoogle Scholar
  17. 17.
    Zhao, H., & Rosei, F. (2017). Colloidal quantum dots for solar technologies. Chem, 3(2), 229–258.CrossRefGoogle Scholar
  18. 18.
    Nozik, A. J., Beard, M. C., Luther, J. M., Law, M., Ellingson, R. J., & Johnson, J. C. (2010). Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chemical Reviews, 110(11), 6873–6890.Google Scholar
  19. 19.
    Kim, J. Y., Voznyy, O., Zhitomirsky, D., & Sargent, E. H. (2013). 25th anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances. Advanced Materials, 25(36), 4986–5010.Google Scholar
  20. 20.
    Konstantatos, G. (2013). Colloidal quantum dot optoelectronics and photovoltaics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  21. 21.
    Murray, C., Norris, D. J., & Bawendi, M. G. (1993). Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 115(19), 8706–8715.CrossRefGoogle Scholar
  22. 22.
    Hines, M. A., & Scholes, G. D. (2003). Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Advanced Materials, 15(21), 1844–1849.CrossRefGoogle Scholar
  23. 23.
    Qiao, K., Deng, H., Yang, X., Dong, D., Li, M., Hu, L., Liu, H., Song, H., & Tang, J. (2016). Spectra-selective PbS quantum dot infrared photodetectors. Nanoscale, 8(13), 7137–7143.CrossRefGoogle Scholar
  24. 24.
    Ren, Z., Sun, J., Li, H., Mao, P., Wei, Y., Zhong, X., Hu, J., Yang, S., & Wang, J. (2017). Bilayer PbS quantum dots for high-performance photodetectors. Advanced Materials, 29(33), 1702055.CrossRefGoogle Scholar
  25. 25.
    Lhuillier, E., Scarafagio, M., Hease, P., Nadal, B., Aubin, H., Xu, X. Z., Lequeux, N., Patriarche, G., Ithurria, S., & Dubertret, B. (2016). Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz. Nano Letters, 16(2), 1282–1286.CrossRefGoogle Scholar
  26. 26.
    Liu, M., Voznyy, O., Sabatini, R., de Arquer, F. P. G., Munir, R., Balawi, A. H., Lan, X., Fan, F., Walters, G., & Kirmani, A. R. (2017). Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nature Materials, 16(2), 258.CrossRefGoogle Scholar
  27. 27.
    Lu, K., Wang, Y., Liu, Z., Han, L., Shi, G., Fang, H., Chen, J., Ye, X., Chen, S., & Yang, F. (2018). High-efficiency PbS quantum-dot solar cells with greatly simplified fabrication processing via “solvent-curing”. Advanced Materials, 30(25), 1707572.CrossRefGoogle Scholar
  28. 28.
    Hou, Y., Chen, W., Baran, D., Stubhan, T., Luechinger, N. A., Hartmeier, B., Richter, M., Min, J., Chen, S., Quiroz, C. O. R., Li, N., Zhang, H., Heumueller, T., Matt, G. J. Osvet, A., Forberich, K., Zhang, Z.-G., Li, Y., Winter, B., Schweizer, P., Spiecker, E., & Brabec, C. J. (2016). Overcoming the interface losses in planar heterojunction perovskite-based solar cells. Advanced Materials, 28(25), 5112–5120.Google Scholar
  29. 29.
    Klimov, V. (2006). Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication. Applied Physics Letters, 89(12), 123118.CrossRefGoogle Scholar
  30. 30.
    Scully, M. O. (2010). Quantum photocell: Using quantum coherence to reduce radiative recombination and increase efficiency. Physical Review Letters, 104(20), 207701.CrossRefGoogle Scholar
  31. 31.
    McGuire, J. A., Joo, J., Pietryga, J. M., Schaller, R. D., & Klimov, V. I. (2008). New aspects of carrier multiplication in semiconductor nanocrystals. Accounts of Chemical Research, 41(12), 1810–1819.Google Scholar
  32. 32.
    Malgras, V., Nattestad, A., Kim, J. H., Dou, S. X., & Yamauchi, Y. (2017). Understanding chemically processed solar cells based on quantum dots. Science and Technology of Advanced Materials, 18(1), 334–350.CrossRefGoogle Scholar
  33. 33.
    Polman, A., Knight, M., Garnett, E. C., Ehrler, B., & Sinke, W. C. (2016). Photovoltaic materials: Present efficiencies and future challenges. Science, 352(6283), aad4424.CrossRefGoogle Scholar
  34. 34.
    Hoye, R. L., Ehrler, B., Böhm, M. L., Muñoz-Rojas, D., Altamimi, R. M., Alyamani, A. Y., Vaynzof, Y., Sadhanala, A., Ercolano, G., & Greenham, N. C. (2014). Improved open-circuit voltage in ZnO–PbSe quantum dot solar cells by understanding and reducing losses arising from the ZnO conduction band tail. Advanced Energy Materials, 4(8), 1301544.CrossRefGoogle Scholar
  35. 35.
    Ehrler, B., Musselman, K. P., Böhm, M. L., Morgenstern, F. S., Vaynzof, Y., Walker, B. J., MacManus-Driscoll, J. L., & Greenham, N. C. (2013). Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide. ACS Nano, 7(5), 4210–4220.CrossRefGoogle Scholar
  36. 36.
    Chuang, C.-H. M., Maurano, A., Brandt, R. E., Hwang, G. W., Jean, J., Buonassisi, T., Bulović, V., & Bawendi, M. G. (2015). Open-circuit voltage deficit, radiative sub-bandgap states, and prospects in quantum dot solar cells. Nano Letters, 15(5), 3286–3294.CrossRefGoogle Scholar
  37. 37.
    Nozik, A. J. (2002). Quantum dot solar cells. Phyisca E, 14(1-2), 115–120.CrossRefGoogle Scholar
  38. 38.
    Beard, M. C. (2011). Multiple exciton generation in semiconductor quantum dots. Journal of Physical Chemistry Letters, 2(11), 1282–1288.CrossRefGoogle Scholar
  39. 39.
    Beard, M. C., Knutsen, K. P., Yu, P., Luther, J. M., Song, Q., Metzger, W. K., Ellingson, R. J., & Nozik, A. J. (2007). Multiple exciton generation in colloidal silicon nanocrystals. Nano Letters, 7(8), 2506–2512.CrossRefGoogle Scholar
  40. 40.
    Klimov, V. I. (2010). Nanocrystal quantum dots. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  41. 41.
    Klimov, V. I. (2000). Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. Washington: ACS Publications.CrossRefGoogle Scholar
  42. 42.
    Midgett, A. G., Luther, J. M., Stewart, J. T., Smith, D. K., Padilha, L. A., Klimov, V. I., Nozik, A. J., & Beard, M. C. (2013). Size and composition dependent multiple exciton generation efficiency in PbS, PbSe, and PbSx Se1–x alloyed quantum dots. Nano Letters, 13(7), 3078–3085.Google Scholar
  43. 43.
    Fidler, A. F., Gao, J., & Klimov, V. (2017). Electron–hole exchange blockade and memory-less recombination in photoexcited films of colloidal quantum dots. Nature Physics, 13(6), 604.CrossRefGoogle Scholar
  44. 44.
    Nishihara, T., Tahara, H., Okano, M., Ono, M., & Kanemitsu, Y. (2015). Fast dissociation and reduced auger recombination of multiple excitons in closely packed PbS nanocrystal thin films. Journal of Physical Chemistry Letters, 6(8), 1327–1332.CrossRefGoogle Scholar
  45. 45.
    Emin, S., Singh, S. P., Han, L., Satoh, N., & Islam, A. (2011). Colloidal quantum dot solar cells. Solar Energy, 85(6), 1264–1282.Google Scholar
  46. 46.
    Luque, A., Martí, A., & Nozik, A. J. (2007). Solar cells based on quantum dots: Multiple exciton generation and intermediate bands. MRS Bulletin, 32(3), 236–241.CrossRefGoogle Scholar
  47. 47.
    Gao, J., Perkins, C. L., Luther, J. M., Hanna, M. C., Chen, H.-Y., Semonin, O. E., Nozik, A. J., Ellingson, R. J., & Beard, M. C. (2011). N-type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Letters, 11(8), 3263–3266.CrossRefGoogle Scholar
  48. 48.
    Zhang, X., Jia, D., Hägglund, C., Öberg, V. A., Du, J., Liu, J., & Johansson, E. M. J. (2018). Highly photostable and efficient semitransparent quantum dot solar cells by using solution-phase ligand exchange. Nano Energy, 53, 373–382.CrossRefGoogle Scholar
  49. 49.
    Semonin, O. E., Luther, J. M., Choi, S., Chen, H.-Y., Gao, J., Nozik, A. J., & Beard, M. C. (2011). Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Sciences, 334(6062), 1530–1533.CrossRefGoogle Scholar
  50. 50.
    Zhang, J., Gao, J., Church, C. P., Miller, E. M., Luther, J. M., Klimov, V. I., & Beard, M. C. (2014). PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Nano Letters, 14(10), 6010–6015.Google Scholar
  51. 51.
    Böhm, M. L., Jellicoe, T. C., Tabachnyk, M., Davis, N. J., Wisnivesky-Rocca-Rivarola, F., Ducati, C., Ehrler, B., Bakulin, A. A., & Greenham, N. C. (2015). Lead telluride quantum dot solar cells displaying external quantum efficiencies exceeding 120%. Nano Letters, 15(12), 7987–7993.CrossRefGoogle Scholar
  52. 52.
    Du, J., Du, Z., Hu, J.-S., Pan, Z., Shen, Q., Sun, J., Long, D., Dong, H., Sun, L., Zhong, X., & Wan, L.-J. (2016). Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. Journal of the American Chemical Society, 138(12), 4201–4209.Google Scholar
  53. 53.
    Bernechea, M., Miller, N. C., Xercavins, G., So, D., Stavrinadis, A., & Konstantatos, G. (2016). Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nature Photonics, 10(8), 521.CrossRefGoogle Scholar
  54. 54.
    Chen, C., Wang, L., Gao, L., Nam, D., Li, D., Li, K., Zhao, Y., Ge, C., Cheong, H., & Liu, H. (2017). 6.5% certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer. ACS Energy Letters, 2(9), 2125–2132.CrossRefGoogle Scholar
  55. 55.
    Khan, J., Yang, X., Qiao, K., Deng, H., Zhang, J., Liu, Z., Ahmad, W., Zhang, J., Li, D., & Liu, H. (2017). Low-temperature-processed SnO2-Cl for efficient PbS quantum-dot solar cells via defect passivation. Journal of Materials Chemistry A, 5(33), 17240–17247.CrossRefGoogle Scholar
  56. 56.
    Bai, Y., Fang, Y., Deng, Y., Wang, Q., Zhao, J., Zheng, X., Zhang, Y., & Huang, J. (2016). Low temperature solution-processed Sb: SnO2 nanocrystals for efficient planar perovskite solar cells. ChemSusChem, 9(18), 2686–2691.CrossRefGoogle Scholar
  57. 57.
    Santra, P. K., Palmstrom, A. F., Tanskanen, J. T., Yang, N., & Bent, S. F. (2015). Improving performance in colloidal quantum dot solar cells by tuning band alignment through surface dipole moments. Journal of Physical Chemistry C, 119(6), 2996–3005.CrossRefGoogle Scholar
  58. 58.
    Carey, G. H., Levina, L., Comin, R., Voznyy, O., & Sargent, E. H. (2015). Record charge carrier diffusion length in colloidal quantum dot solids via mutual dot-to-dot surface passivation. Advanced Materials, 27(21), 3325–3330.CrossRefGoogle Scholar
  59. 59.
    Kagan, C. R., & Murray, C. B. (2015). Charge transport in strongly coupled quantum dot solids. Nature Nanotechnology, 10(12), 1013.CrossRefGoogle Scholar
  60. 60.
    Santra, P. K., Palmstrom, A. F., Tassone, C. J., & Bent, S. F. (2016). Molecular ligands control superlattice structure and crystallite orientation in colloidal quantum dot solids. Chemistry Materials, 28(19), 7072–7081.CrossRefGoogle Scholar
  61. 61.
    Stolle, C. J., Lu, X., Yu, Y., Schaller, R. D., & Korgel, B. A. (2017). Efficient carrier multiplication in colloidal silicon nanorods. Nano Letters, 17(9), 5580–5586.CrossRefGoogle Scholar
  62. 62.
    Tischler, J., Kennedy, T., Glaser, E., Efros, A. L., Foos, E., Boercker, J., Zega, T., Stroud, R., & Erwin, S. (2010). Band-edge excitons in PbSe nanocrystals and nanorods. Physical Review B–Condensed Matter and Materials Physics, 82(24), 245303.CrossRefGoogle Scholar
  63. 63.
    Song, J. H., Choi, H., Kim, Y. H., & Jeong, S. (2017). High performance colloidal quantum dot photovoltaics by controlling protic solvents in ligand exchange. Advanced Energy Materials, 7(15), 1700301.CrossRefGoogle Scholar
  64. 64.
    Aqoma, H., Mubarok, M. A., Lee, W., Hadmojo, W. T., Park, C., Ahn, T. K., Ryu, D. Y., & Jang, S. Y. (2018). Improved processability and efficiency of colloidal quantum dot solar cells based on organic hole transport layers. Advanced Energy Materials, 8, 1800572.CrossRefGoogle Scholar
  65. 65.
    Wang, R., Wu, X., Xu, K., Zhou, W., Shang, Y., Tang, H., Chen, H., & Ning, Z. (2018). Highly efficient inverted structural quantum dot solar cells. Advanced Materials, 30(7), 1704882.CrossRefGoogle Scholar
  66. 66.
    Rekemeyer, P. H., Chuang, C.-H. M., Bawendi, M. G., & Gradecak, S. (2017). Minority carrier transport in lead sulfide quantum dot photovoltaics. Nano Letters, 17(10), 6221–6227.CrossRefGoogle Scholar
  67. 67.
    Thanh, N. T., Maclean, N., & Mahiddine, S. (2014). Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, 114(15), 7610–7630.CrossRefGoogle Scholar
  68. 68.
    Pu, Y., Cai, F., Wang, D., Wang, J.-X., & Chen, J.-F. (2018). Colloidal synthesis of semiconductor quantum dots toward large-scale production: A review. Industrial and Engineering Chemistry Research, 57(6), 1790–1802.CrossRefGoogle Scholar
  69. 69.
    Park, J., Joo, J., Kwon, S. G., Jang, Y., & Hyeon, T. (2007). Synthesis of monodisperse spherical nanocrystals. Angewandte Chemie International Edition, 46(25), 4630–4660.CrossRefGoogle Scholar
  70. 70.
    LaMer, V. K., & Dinegar, R. H. (1950). Theory, production and mechanism of formation of monodispersed hydrosols. Journal of the American Chemical Society, 72(11), 4847–4854.CrossRefGoogle Scholar
  71. 71.
    Mer, V. K. L. (1952). Nucleation in phase transitions. Industrial and Engineering Chemistry Research, 44(6), 1270–1277.CrossRefGoogle Scholar
  72. 72.
    Watzky, M. A., & Finke, R. G. (1997). Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: Slow, continuous nucleation and fast autocatalytic surface growth. Journal of the American Chemical Society, 119(43), 10382–10400.CrossRefGoogle Scholar
  73. 73.
    Ostwald, W. (1900). Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper. Zeitschrift für Physikalische Chemie, 34U(1), 495–503.Google Scholar
  74. 74.
    Lifshitz, I. M., & Slyozov, V. V. (1961). The kinetics of precipitation from supersaturated solid solutions. Journal of Physics and Chemistry of Solids, 19(1-2), 35–50.CrossRefGoogle Scholar
  75. 75.
    Wagner, C. D. (1961). Polymerization of solid ethylene by ionizing radiation: Evidence for ion-molecule condensation. Journal of Physical Chemistry Letters, 65(12), 2276–2277.Google Scholar
  76. 76.
    Reiss, H. (1951). The growth of uniform colloidal dispersions. The Journal of Chemical Physics, 19(4), 482–487.CrossRefGoogle Scholar
  77. 77.
    Burda, C., Chen, X., Narayanan, R., & El-Sayed, M. A. (2005). Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 105(4), 1025–1102.CrossRefGoogle Scholar
  78. 78.
    Kwon, S. G., Piao, Y., Park, J., Angappane, S., Jo, Y., Hwang, N.-M., Park, J.-G., & Hyeon, T. (2007). Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. Journal of the American Chemical Society, 129(41), 12571–12584.CrossRefGoogle Scholar
  79. 79.
    Pan, J., El-Ballouli, A., Rollny, L., Voznyy, O., Burlakov, V. M., Goriely, A., Sargent, E. H., & Bakr, O. M. (2013). Automated synthesis of photovoltaic-quality colloidal quantum dots using separate nucleation and growth stages. ACS Nano, 7(11), 10158–10166.CrossRefGoogle Scholar
  80. 80.
    Calió, L., Kazim, S., Grätzel, M., & Ahmad, S. (2016). Hole-transport materials for perovskite solar cells. ACS Energy Letters, 55(47), 14522–14545.Google Scholar
  81. 81.
    Kamat, P. V. (2013). Quantum dot solar cells. The next big thing in photovoltaics. Journal of Physical Chemistry Letters, 4(6), 908–918.CrossRefGoogle Scholar
  82. 82.
    Chernomordik, B. D., Marshall, A. R., Pach, G. F., Luther, J. M., & Beard, M. C. (2016). Quantum dot solar cell fabrication protocols. Chem Matter, 29(1), 189–198.Google Scholar
  83. 83.
    Suárez, J. A., Plata, J. J., Márquez, A. M., & Sanz, J. F. (2017). Effects of the capping ligands, linkers and oxide surface on the electron injection mechanism of copper sulfide quantum dot-sensitized solar cells. Physical Chemistry Chemical Physics, 19(22), 14580–14587.Google Scholar
  84. 84.
    Watson, D. F. (2010). Linker-assisted assembly and interfacial electron-transfer reactivity of quantum dot− substrate architectures. Journal of Physical Chemistry Letters, 1(15), 2299–2309.CrossRefGoogle Scholar
  85. 85.
    Islam, M. A., & Herman, I. P. (2002). Electrodeposition of patterned CdSe nanocrystal films using thermally charged nanocrystals. Applied Physics Letters, 80(20), 3823–3825.CrossRefGoogle Scholar
  86. 86.
    Brown, P., & Kamat, P. V. (2008). Quantum dot solar cells. Electrophoretic deposition of CdSe−C60 composite films and capture of photogenerated electrons with nC60 cluster shell. Journal of the American Chemical Society, 130(28), 8890–8891.CrossRefGoogle Scholar
  87. 87.
    Deepa, K., & Nagaraju, J. (2014). Development of SnS quantum dot solar cells by SILAR method. Materials Science in Semiconductor Processing, 27, 649–653.Google Scholar
  88. 88.
    Woo Jung, S., Kim, J.-H., Kim, H., Choi, C.-J., & Ahn, K.-S. (2011). CdS quantum dots grown by in situ chemical bath deposition for quantum dot-sensitized solar cells. Journal of Applied Physics, 110(4), 044313.CrossRefGoogle Scholar
  89. 89.
    Zhou, R., Niu, H., Zhang, Q., Uchaker, E., Guo, Z., Wan, L., Miao, S., Xu, J., & Cao, G. (2015). Influence of deposition strategies on CdSe quantum dot-sensitized solar cells: A comparison between successive ionic layer adsorption and reaction and chemical bath deposition. Journal of Materials Chemistry A, 3(23), 12539–12549.CrossRefGoogle Scholar
  90. 90.
    Schaller, R. D., Sykora, M., Pietryga, J. M., & Klimov, V. I. (2006). Seven excitons at a cost of one: Redefining the limits for conversion efficiency of photons into charge carriers. Nano Letters, 6(3), 424–429.CrossRefGoogle Scholar
  91. 91.
    Stolle, C. J., Schaller, R. D., & Korgel, B. A. (2014). Efficient carrier multiplication in colloidal CuInSe2 nanocrystals. Journal of Physical Chemistry Letters, 5(18), 3169–3174.CrossRefGoogle Scholar
  92. 92.
    Luther, J. M., Gao, J., Lloyd, M. T., Semonin, O. E., Beard, M. C., & Nozik, A. J. (2010). Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Advanced Materials, 22(33), 3704–3707.CrossRefGoogle Scholar
  93. 93.
    Ip, A. H., Thon, S. M., Hoogland, S., Voznyy, O., Zhitomirsky, D., Debnath, R., Levina, L., Rollny, L. R., Carey, G. H., & Fischer, A. (2012). Hybrid passivated colloidal quantum dot solids. Nature Nanotechnology, 7(9), 577.CrossRefGoogle Scholar
  94. 94.
    Hou, B., Cho, Y., Kim, B. S., Hong, J., Park, J. B., Ahn, S. J., Sohn, J. I., Cha, S., & Kim, J. M. (2016). Highly monodispersed PbS quantum dots for outstanding cascaded-junction solar cells. ACS Energy Letters, 1(4), 834–839.CrossRefGoogle Scholar
  95. 95.
    Hall, R., & Racette, J. (1961). Band structure parameters deduced from tunneling experiments. Journal of Applied Physics, 32(10), 2078–2081.CrossRefGoogle Scholar
  96. 96.
    Burstein, E., Perkowitz, S., & Brodsky, M. (1968). The dielectric properties of the cubic IV-VI compound semiconductors. Journal de Physique Colloques, 29(C4), C4-78–C4-83.Google Scholar
  97. 97.
    Allan, G., & Delerue, C. (2006). Role of impact ionization in multiple exciton generation in PbSe nanocrystals. Physical Review B, 73(20), 205423.CrossRefGoogle Scholar
  98. 98.
    Wang, D., Baral, J. K., Zhao, H., Gonfa, B. A., Truong, V. V., El Khakani, M. A., Izquierdo, R., & Ma, D. (2011). Controlled fabrication of PbS quantum-dot/carbon-nanotube nanoarchitecture and its significant contribution to near-infrared photon-to-current conversion. Advanced Functional Materials, 21(21), 4010–4018.Google Scholar
  99. 99.
    Wei, Y., Ren, Z., Zhang, A., Mao, P., Li, H., Zhong, X., Li, W., Yang, S., & Wang, J. (2018). Hybrid organic/PbS quantum dot bilayer photodetector with low dark current and high detectivity. Advanced Functional Materials, 28(11), 1706690.CrossRefGoogle Scholar
  100. 100.
    Kirmani, A. R., García de Arquer, F. P., Fan, J. Z., Khan, J. I., Walters, G., Hoogland, S., Wehbe, N., Said, M. M., Barlow, S., Laquai, F., Marder, S. R., Sargent, E. H., & Amassian, A. (2017). Molecular doping of the hole-transporting layer for efficient, single-step-deposited colloidal quantum dot photovoltaics. ACS Energy Letters, 2(9), 1952–1959.CrossRefGoogle Scholar
  101. 101.
    Debellis, D., Gigli, G., Ten Brinck, S., Infante, I., & Giansante, C. (2017). Quantum-confined and enhanced optical absorption of colloidal PbS quantum dots at wavelengths with expected bulk behavior. Nano Letters, 17(2), 1248–1254.CrossRefGoogle Scholar
  102. 102.
    Tang, J., Brzozowski, L., Barkhouse, D. A. R., Wang, X., Debnath, R., Wolowiec, R., Palmiano, E., Levina, L., Pattantyus-Abraham, A. G., Jamakosmanovic, D., & Sargent, E. H. (2010). Quantum dot photovoltaics in the extreme quantum confinement regime: The surface-chemical origins of exceptional air-and light-stability. ACS Nano, 4(2), 869–878.CrossRefGoogle Scholar
  103. 103.
    Jeong, K. S., Tang, J., Liu, H., Kim, J., Schaefer, A. W., Kemp, K., Levina, L., Wang, X., Hoogland, S., & Debnath, R. (2011). Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano, 6(1), 89–99.CrossRefGoogle Scholar
  104. 104.
    Koleilat, G. I., Levina, L., Shukla, H., Myrskog, S. H., Hinds, S., Pattantyus-Abraham, A. G., & Sargent, E. H. (2008). Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano, 2(5), 833–840.CrossRefGoogle Scholar
  105. 105.
    Naka, S., Okada, H., Onnagawa, H., & Tsutsui, T. (2000). High electron mobility in bathophenanthroline. Applied Physics Letters, 76(2), 197–199.CrossRefGoogle Scholar
  106. 106.
    Juška, G., Arlauskas, K., Viliūnas, M., & Kočka, J. (2000). Extraction current transients: New method of study of charge transport in microcrystalline silicon. Physical Review Letters, 84(21), 4946.CrossRefGoogle Scholar
  107. 107.
    Zhang, Z., Chen, Z., Yuan, L., Chen, W., Yang, J., Wang, B., Wen, X., Zhang, J., Hu, L., & Stride, J. A. (2017). A new passivation route leading to over 8% efficient PbSe quantum-dot solar cells via direct ion exchange with perovskite nanocrystals. Advanced Materials, 29(41), 1703214.CrossRefGoogle Scholar
  108. 108.
    Pan, Z., Mora-Seró, I., Shen, Q., Zhang, H., Li, Y., Zhao, K., Wang, J., Zhong, X., & Bisquert, J. (2014). High-efficiency “green” quantum dot solar cells. Journal of the American Chemical Society, 136(25), 9203–9210.CrossRefGoogle Scholar
  109. 109.
    Lan, X., Masala, S., & Sargent, E. H. (2014). Charge-extraction strategies for colloidal quantum dot photovoltaics. Nature Materials, 13(3), 233.CrossRefGoogle Scholar
  110. 110.
    Etgar, L., Yanover, D., Čapek, R. K., Vaxenburg, R., Xue, Z., Liu, B., Nazeeruddin, M. K., Lifshitz, E., & Grätzel, M. (2013). Core/Shell PbSe/PbS QDs TiO2 heterojunction solar cell. Advanced Functional Materials, 23(21), 2736–2741.Google Scholar
  111. 111.
    Kim, J.-Y., Yang, J., Yu, J. H., Baek, W., Lee, C.-H., Son, H. J., Hyeon, T., & Ko, M. J. J. A. (2015). Highly efficient copper–indium–selenide quantum dot solar cells: Suppression of carrier recombination by controlled ZnS overlayers. ACS Nano, 9(11), 11286–11295.CrossRefGoogle Scholar
  112. 112.
    Kuo, K.-T., Liu, D.-M., Chen, S.-Y., & Lin, C.-C. (2009). Core-shell CuInS2/ZnS quantum dots assembled on short ZnO nanowires with enhanced photo-conversion efficiency. Journal of Materials Chemistry A, 19(37), 6780–6788.CrossRefGoogle Scholar
  113. 113.
    Wang, Y.-Q., Rui, Y.-C., Zhang, Q.-H., Li, Y.-G., & Wang, H.-Z. (2013). A facile in situ synthesis route for CuInS2 quantum-dots/In2S3 co-sensitized Photoanodes with high photoelectric performance. ACS Applied Materials & Interfaces, 5(22), 11858–11864.CrossRefGoogle Scholar
  114. 114.
    Chang, J.-Y., Lin, J.-M., Su, L.-F., & Chang, C.-F. (2013). Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture. ACS Applied Materials & Interfaces, 5(17), 8740–8752.CrossRefGoogle Scholar
  115. 115.
    McDaniel, H., Koposov, A. Y., Draguta, S., Makarov, N. S., Pietryga, J. M., & Klimov, V. I. (2014). Simple yet versatile synthesis of CuInSex S2–x quantum dots for sunlight harvesting. Journal of Physical Chemistry C, 118(30), 16987–16994.CrossRefGoogle Scholar
  116. 116.
    Bernechea, M., Miller, N. C., Xercavins, G., So, D., Stavrinadis, A., & Konstantatos, G. (2016). Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nature Photonics, 10(8), 521.CrossRefGoogle Scholar
  117. 117.
    Luber, E. J., Mobarok, M. H., & Buriak, J. M. (2013). Solution-processed zinc phosphide (α-Zn3P2) colloidal semiconducting nanocrystals for thin film photovoltaic applications. ACS Nano, 7(9), 8136–8146.CrossRefGoogle Scholar
  118. 118.
    Xu, Y., Al-Salim, N., Bumby, C. W., & Tilley, R. D. (2009). Synthesis of SnS quantum dots. Journal of the American Chemical Society, 131(44), 15990–15991.CrossRefGoogle Scholar
  119. 119.
    Choi, H., Song, J. H., Jang, J., Mai, X. D., Kim, S., & Jeong, S. (2015). High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: Short circuit current enhancement without the loss of open circuit voltage by shell thickness control. Nanoscale, 7(41), 17473–17481.CrossRefGoogle Scholar
  120. 120.
    Xiao, J., Wang, Y., Hua, Z., Wang, X., Zhang, C., & Xiao, M. (2012). Carrier multiplication in semiconductor nanocrystals detected by energy transfer to organic dye molecules. Nature Communications, 3, 1170.CrossRefGoogle Scholar
  121. 121.
    Schaller, R. D., Petruska, M. A., & Klimov, V. I. (2005). Effect of electronic structure on carrier multiplication efficiency: Comparative study of PbSe and CdSe nanocrystals. Applied Physics Letters, 87(25), 253102.CrossRefGoogle Scholar
  122. 122.
    Schaller, R. D., & Klimov, V. I. (2004). High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Physical Review Letters, 92(18), 186601.CrossRefGoogle Scholar
  123. 123.
    Bakulin, A. A., Neutzner, S., Bakker, H. J., Ottaviani, L., Barakel, D., & Chen, Z. (2013). Charge trapping dynamics in PbS colloidal quantum dot photovoltaic devices. ACS Nano, 7(10), 8771–8779.Google Scholar
  124. 124.
    Cao, Y., Stavrinadis, A., Lasanta, T., So, D., & Konstantatos, G. (2016). The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nature Energy, 1(4), 16035.CrossRefGoogle Scholar
  125. 125.
    Azmi, R., Sinaga, S., Aqoma, H., Seo, G., Ahn, T. K., Park, M., Ju, S.-Y., Lee, J.-W., Kim, T.-W., & Oh, S.-H. (2017). Highly efficient air-stable colloidal quantum dot solar cells by improved surface trap passivation. Nano Energy, 39, 86–94.CrossRefGoogle Scholar
  126. 126.
    Kemp, K., Wong, C., Hoogland, S., & Sargent, E. H. (2013). Photocurrent extraction efficiency in colloidal quantum dot photovoltaics. Applied Physics Letters, 103(21), 211101.CrossRefGoogle Scholar
  127. 127.
    Martín-García, B., Bi, Y., Prato, M., Spirito, D., Krahne, R., Konstantatos, G., & Moreels, I. (2018). Reduction of moisture sensitivity of PbS quantum dot solar cells by incorporation of reduced graphene oxide. Solar Energy Materials and Solar Cells, 183, 1–7.Google Scholar
  128. 128.
    Aqoma, H., Al Mubarok, M., Hadmojo, W. T., Lee, E. H., Kim, T. W., Ahn, T. K., Oh, S. H., & Jang, S. Y. (2017). High-efficiency photovoltaic devices using trap-controlled quantum-dot ink prepared via phase-transfer exchange. Advanced Materials, 29(19), 1605756.CrossRefGoogle Scholar
  129. 129.
    Gao, J., & Johnson, J. C. (2012). Charge trapping in bright and dark states of coupled PbS quantum dot films. ACS Nano, 6(4), 3292–3303.CrossRefGoogle Scholar
  130. 130.
    Jean, J., Mahony, T. S., Bozyigit, D., Sponseller, M., Holovský, J., Bawendi, M. G., & Bulović, V. (2017). Radiative efficiency limit with band tailing exceeds 30% for quantum dot solar cells. ACS Energy Letters, 2(11), 2616–2624.CrossRefGoogle Scholar
  131. 131.
    Kim, D., Kim, D.-H., Lee, J.-H., & Grossman, J. C. (2013). Impact of stoichiometry on the electronic structure of PbS quantum dots. Physical Review Letters, 110(19), 196802.CrossRefGoogle Scholar
  132. 132.
    Kushnir, K., Chen, K., Zhou, L., Giri, B., Grimm, R. L., Rao, P. M., & Titova, L. V. (2018). Dynamics of photoexcited carriers in polycrystalline PbS and at PbS/ZnO heterojunctions: Influence of grain boundaries and interfaces. Journal of Physical Chemistry C, 122(22), 11682–11688.CrossRefGoogle Scholar
  133. 133.
    Rekemeyer, P. H., Chang, S., Chuang, C. H. M., Hwang, G. W., Bawendi, M. G., & Gradečak, S. (2016). Enhanced photocurrent in pbs quantum dot photovoltaics via ZnO nanowires and band alignment engineering. Advanced Energy Materials, 6(24), 1600848.CrossRefGoogle Scholar
  134. 134.
    Xia, P., Liang, Z., Mahboub, M., van Baren, J., Lui, C. H., Jiao, J., Graham, K. R., & Tang, M. L. (2018). Surface fluorination for controlling the PbS quantum dot bandgap and band offset. Chem Matter, 30(15), 4943–4948.CrossRefGoogle Scholar
  135. 135.
    Hu, L., Zhang, Z., Patterson, R. J., Hu, Y., Chen, W., Chen, C., Li, D., Hu, C., Ge, C., & Chen, Z. (2018). Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping. Nano Energy, 46, 212–219.CrossRefGoogle Scholar
  136. 136.
    Huang, J., Huang, Z., Yang, Y., Zhu, H., & Lian, T. (2010). Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue. Journal of the American Chemical Society, 132(13), 4858–4864.CrossRefGoogle Scholar
  137. 137.
    Wang, H., Yang, S., Wang, Y., Xu, J., Huang, Y., Li, W., He, B., Muhammad, S., Jiang, Y., & Tang, Y. (2017). Influence of post-synthesis annealing on PbS quantum dot solar cells. Organic Electronics, 42, 309–315.CrossRefGoogle Scholar
  138. 138.
    Kurpiers, J., Balazs, D. M., Paulke, A., Albrecht, S., Lange, I., Protesescu, L., Kovalenko, M. V., Loi, M. A., & Neher, D. (2016). Free carrier generation and recombination in PbS quantum dot solar cells. Applied Physics Letters, 108(10), 103102.CrossRefGoogle Scholar
  139. 139.
    Zhang, X., Welch, K., Tian, L., Johansson, M. B., Häggman, L., Liu, J., & Johansson, E. M. J. (2017). Enhanced charge carrier extraction by a highly ordered wrinkled MgZnO thin film for colloidal quantum dot solar cells. Journal of Materials Chemistry C, 5(42), 11111–11120.CrossRefGoogle Scholar
  140. 140.
    Cho, Y., Giraud, P., Hou, B., Lee, Y. W., Hong, J., Lee, S., Pak, S., Lee, J., Jang, J. E., & Morris, S. M. (2018). Charge transport modulation of a flexible quantum dot solar cell using a piezoelectric effect. Advanced Energy Materials, 8(3), 1700809.CrossRefGoogle Scholar
  141. 141.
    Lu, K., Wang, Y., Yuan, J., Cui, Z., Shi, G., Shi, S., Han, L., Chen, S., Zhang, Y., & Ling, X. (2017). Efficient PbS quantum dot solar cells employing a conventional structure. Journal of Materials Chemistry A, 5(45), 23960–23966.CrossRefGoogle Scholar
  142. 142.
    Willis, S. M., Cheng, C., Assender, H. E., & Watt, A. A. R. (2012). The transitional heterojunction behavior of PbS/ZnO colloidal quantum dot solar cells. Nano Letters, 12(3), 1522–1526.CrossRefGoogle Scholar
  143. 143.
    Aqoma, H., Barange, N., Ryu, I., Yim, S., Do, Y. R., Cho, S., Ko, D. H., & Jang, S. Y. (2015). Simultaneous improvement of charge generation and extraction in colloidal quantum dot photovoltaics through optical management. Advanced Functional Materials, 25(39), 6241–6249.CrossRefGoogle Scholar
  144. 144.
    Wang, H., Wang, Y., He, B., Li, W., Sulaman, M., Xu, J., Yang, S., Tang, Y., & Zou, B. (2016). Charge carrier conduction mechanism in PbS quantum dot solar cells: Electrochemical impedance spectroscopy study. ACS Applied Materials & Interfaces, 8(28), 18526–18533.CrossRefGoogle Scholar
  145. 145.
    Liu, H., Tang, J., Kramer, I. J., Debnath, R., Koleilat, G. I., Wang, X., Fisher, A., Li, R., Brzozowski, L., Levina, L., & Sargent, E. H. (2011). Electron acceptor materials engineering in colloidal quantum dot solar cells. Advanced Materials, 23(33), 3832–3837.Google Scholar
  146. 146.
    Morales-Masis, M., De Wolf, S., Woods-Robinson, R., Ager, J. W., & Ballif, C. (2017). Transparent electrodes for efficient optoelectronics. Advanced Electronic Materials, 3(5), 1600529.CrossRefGoogle Scholar
  147. 147.
    Wang, H., Kubo, T., Nakazaki, J., Kinoshita, T., & Segawa, H. (2013). PbS-quantum-dot-based heterojunction solar cells utilizing ZnO nanowires for high external quantum efficiency in the near-infrared region. Journal of Physical Chemistry Letters, 4(15), 2455–2460.CrossRefGoogle Scholar
  148. 148.
    Kawawaki, T., Wang, H., Kubo, T., Saito, K., Nakazaki, J., Segawa, H., & Tatsuma, T. (2015). Efficiency enhancement of PbS quantum dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes. ACS Nano, 9(4), 4165–4172.CrossRefGoogle Scholar
  149. 149.
    Zhang, X., Santra, P. K., Tian, L., Johansson, M. B., Rensmo, H., & Johansson, E. M. J. (2017). Highly efficient flexible quantum dot solar cells with improved electron extraction using MgZnO nanocrystals. ACS Nano, 11(8), 8478–8487.CrossRefGoogle Scholar
  150. 150.
    Zhang, X., Öberg, V. A., Du, J., Liu, J., & Johansson, E. M. J. (2018). Extremely lightweight and ultra-flexible infrared light-converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire-based electrode. Energy & Environmental Science, 11(2), 354–364.CrossRefGoogle Scholar
  151. 151.
    Brown, P. R., Lunt, R. R., Zhao, N., Osedach, T. P., Wanger, D. D., Chang, L.-Y., Bawendi, M. G., & Bulovic, V. (2011). Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. Nano Letters, 11(7), 2955–2961.CrossRefGoogle Scholar
  152. 152.
    Tang, J., & Sargent, E. H. (2011). Infrared colloidal quantum dots for photovoltaics: Fundamentals and recent progress. Advanced Materials, 23(1), 12–29.CrossRefGoogle Scholar
  153. 153.
    So, D. (2016). Copper indium sulfide colloidal quantum dot solar cells. (Doctoral thesis, UPC, Institut de Ciències Fotòniques).Google Scholar
  154. 154.
    Martínez Montblanch, L. (2014). N-type bismuth sulfide coloidal nanocrystals and their application to solution-processed photovoltaic devices. (Doctoral thesis, UPC, Institut de Ciències Fotòniques).Google Scholar
  155. 155.
    Cheng, J. J., Chuang, C.-H. M., Hentz, O., Rekemeyer, P. H., Bawendi, M. G., & Gradečak, S. (2018). Dimension-and surface-tailored ZnO nanowires enhance charge collection in quantum dot photovoltaic devices. ACS Applied Materials & Interfaces, 1(5), 1815–1822.Google Scholar
  156. 156.
    Leschkies, K. S., Jacobs, A. G., Norris, D. J., & Aydil, E. S. (2009). Nanowire-quantum-dot solar cells and the influence of nanowire length on the charge collection efficiency. Applied Physics Letters, 95(19), 193103.CrossRefGoogle Scholar
  157. 157.
    Ren, Z., Kuang, Z., Zhang, L., Sun, J., Yi, X., Pan, Z., Zhong, X., Hu, J., Xia, A., & Wang, J. (2017). Enhancing electron and hole extractions for efficient PbS quantum dot solar cells. Solar RRL, 1(12), 1700176.CrossRefGoogle Scholar
  158. 158.
    Kramer, I. J., Zhitomirsky, D., Bass, J. D., Rice, P. M., Topuria, T., Krupp, L., Thon, S. M., Ip, A. H., Debnath, R., & Kim, H. C. (2012). Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells. Advanced Materials, 24(17), 2315–2319.CrossRefGoogle Scholar
  159. 159.
    Wang, H., Kubo, T., Nakazaki, J., & Segawa, H. (2017). Solution-processed short-wave infrared PbS colloidal quantum dot/ZnO nanowire solar cells giving high open-circuit voltage. ACS Energy Letters, 2(9), 2110–2117.CrossRefGoogle Scholar
  160. 160.
    Barkhouse, D. A. R., Debnath, R., Kramer, I. J., Zhitomirsky, D., Pattantyus-Abraham, A. G., Levina, L., Etgar, L., Grätzel, M., & Sargent, E. H. (2011). Depleted bulk heterojunction colloidal quantum dot photovoltaics. Advanced Materials, 23(28), 3134–3138.CrossRefGoogle Scholar
  161. 161.
    Hjerrild, N. (2013). Silver nanowire transparent conductors for quantum dot photovoltaics. Oxford: University of Oxford.Google Scholar
  162. 162.
    Yang, Y. M., Chen, W., Dou, L., Chang, W.-H., Duan, H.-S., Bob, B., Li, G., & Yang, Y. (2015). High-performance multiple-donor bulk heterojunction solar cells. Nature Photonics, 9(3), 190.CrossRefGoogle Scholar
  163. 163.
    Lu, L., Zheng, T., Wu, Q., Schneider, A. M., Zhao, D., & Yu, L. (2015). Recent advances in bulk heterojunction polymer solar cells. Chemical Reviews, 115(23), 12666–12731.CrossRefGoogle Scholar
  164. 164.
    Jung, J. W., Jo, J. W., Chueh, C. C., Liu, F., Jo, W. H., Russell, T. P., & Jen, A. K. Y. (2015). Fluoro substituted n type conjugated polymers for additive free all polymer bulk heterojunction solar cells with high power conversion efficiency of 6.71%. Advanced Materials, 27(21), 3310–3317.CrossRefGoogle Scholar
  165. 165.
    Zhao, T., Goodwin, E. D., Guo, J., Wang, H., Diroll, B. T., Murray, C. B., & Kagan, C. R. (2016). Advanced architecture for colloidal PbS quantum dot solar cells exploiting a CdSe quantum dot buffer layer. ACS Nano, 10(10), 9267–9273.CrossRefGoogle Scholar
  166. 166.
    Mali, S. S., Kim, H., Shim, C. S., Patil, P. S., Kim, J. H., & Hong, C. K. (2013). Surfactant free most probable TiO2 nanostructures via hydrothermal and its dye sensitized solar cell properties. Scientific Reports, 3, 3004.CrossRefGoogle Scholar
  167. 167.
    Qiu, Q., Li, S., Jiang, J., Wang, D., Lin, Y., & Xie, T. (2017). Improved electron transfer between TiO2 and FTO interface by n-doped anatase TiO2 nanowires and its applications in quantum dot-sensitized solar cells. Journal of Physical Chemistry C, 121(39), 21560–21570.CrossRefGoogle Scholar
  168. 168.
    Davis, N. J., Böhm, M. L., Tabachnyk, M., Wisnivesky-Rocca-Rivarola, F., Jellicoe, T. C., Ducati, C., Ehrler, B., & Greenham, N. C. (2015). Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nature Communications, 6, 8259.CrossRefGoogle Scholar
  169. 169.
    Yao, X., Song, Z., Mi, L., Li, G., Wang, X., Wang, X., & Jiang, Y. (2017). Improved stability of depletion heterojunction solar cells employing cation-exchange PbS quantum dots. Solar Energy Materials & Solar Cells, 164, 122–127.CrossRefGoogle Scholar
  170. 170.
    Leng, M., Luo, M., Chen, C., Qin, S., Chen, J., Zhong, J., & Tang, J. (2014). Selenization of Sb2Se3 absorber layer: An efficient step to improve device performance of CdS/Sb2Se3 solar cells. Applied Physics Letters, 105(8), 083905.CrossRefGoogle Scholar
  171. 171.
    Amaya Suárez, J., Plata, J. J., Márquez, A. M., & Fernández Sanz, J. (2017). Ag2S quantum dot-sensitized solar cells by first principles: The effect of capping ligands and linkers. The Journal of Physical Chemistry. A, 121(38), 7290–7296.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of PhysicsUniversity of Electronic Science and Technology of ChinaChengduP. R. China

Personalised recommendations